A plasticity model for metal powder forming processes

Abstract In this paper, a double-surface plasticity model, based on a combination of a convex yield surface consisting of a failure envelope, such as a Mohr–Coulomb yield surface and, a hardening cap model, is developed for the nonlinear behaviour of powder materials in the concept of a generalized plasticity formulation for the description of cyclic loading. This model reflects the yielding, frictional and densification characteristics of powder along with strain and geometrical hardening which occur during the compaction process. The solution yields details on the powder displacement from which it is possible to establish the stress state in the powder and the densification is derived from consideration of the elemental volumetric strain. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. Finally, an adaptive finite element model (FEM) analysis is employed by the updated Lagrangian formulation to simulate the compaction of a set of complex powder forming processes.

[1]  Roland Glowinski,et al.  Energy methods in finite element analysis , 1980 .

[2]  Y. Corapcioglu,et al.  Constitutive equations for plastic deformation of porous materials , 1978 .

[3]  Chandrakant S. Desai,et al.  Constitutive laws for engineering materials, with emphasis on geologic materials , 1984 .

[4]  A. Schofield,et al.  Yielding of Clays in States Wetter than Critical , 1963 .

[5]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[6]  George Y. Baladi,et al.  Soil Plasticity: Theory and Implementation , 1985 .

[7]  Roland W. Lewis,et al.  Finite element simulation for dynamic large elastoplastic deformation in metal powder forming , 1998 .

[8]  Karl S. Pister,et al.  Assessment of cap model: consistent return algorithms and rate-dependent extension , 1988 .

[9]  Hans-Åke Häggblad Constitutive models for powder materials , 1991 .

[10]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[11]  Z. Mroz,et al.  Associated and non-associated sliding rules in contact friction problems. , 1978 .

[12]  K. Roscoe,et al.  ON THE GENERALIZED STRESS-STRAIN BEHAVIOUR OF WET CLAY , 1968 .

[13]  J. Z. Zhu,et al.  The finite element method , 1977 .

[14]  W. Brekelmans,et al.  AN EULERIAN APPROACH FOR DIE COMPACTION PROCESSES , 1991 .

[15]  Susumu Shima,et al.  Plasticity theory for porous metals , 1976 .

[16]  D. Owen,et al.  Computational model for 3‐D contact problems with friction based on the penalty method , 1992 .

[17]  O. C. Zienkiewicz,et al.  Elasto‐plastic stress analysis. A generalization for various contitutive relations including strain softening , 1972 .

[18]  Chandrakant S. Desai,et al.  Analysis, evaluation, and implementation of a nonassociative model for geologic materials , 1989 .

[19]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[20]  D. C. Drucker,et al.  Soil Mechanics and Work-Hardening Theories of Plasticity , 1955 .

[21]  A. Curnier A Theory of Friction , 1984 .

[22]  Roland W. Lewis,et al.  Numerical modelling of large deformation in metal powder forming , 1998 .

[23]  Chandrakant S. Desai,et al.  A general basis for yield, failure and potential functions in plasticity , 1980 .

[24]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[25]  G. Pande,et al.  Finite elements in geotechnical engineering , 1981 .

[26]  F. Dimaggio,et al.  MATERIAL MODEL FOR GRANULAR SOILS , 1971 .

[27]  George Y. Baladi,et al.  Generalized Cap Model for Geological Materials , 1976 .

[28]  I. S. Sandler,et al.  An algorithm and a modular subroutine for the CAP model , 1979 .

[29]  Scott W. Sloan,et al.  Substepping schemes for the numerical integration of elastoplastic stress–strain relations , 1987 .

[30]  R. J. Green,et al.  A plasticity theory for porous solids , 1972 .

[31]  J. C. Simo,et al.  A modified cap model: Closest point solution algorithms , 1993 .

[32]  Gordan Jelenić,et al.  A kinematically exact space finite strain beam model - finite element formulation by generalized virtual work principle , 1995 .

[33]  George Y. Baladi,et al.  OUTRUNNING GROUND SHOCK COMPUTED WITH DIFFERENT MODELS , 1977 .

[34]  Hans-Åke Häggblad,et al.  Modelling and simulation of metal powder die pressing with use of explicit time integration , 1994 .

[35]  A. Baltov,et al.  A rule of anisotropic hardening , 1965 .

[36]  Han Huetink,et al.  Simulation of Materials Processing: Theory, Methods and Applications: Numiform '98 , 1998 .

[37]  O. C. Zienkiewicz,et al.  Generalized plasticity and the modelling of soil behaviour , 1990 .

[38]  Ahmad Kamal Ariffin Mohd Ihsan,et al.  Investigation of powder compaction processes , 1994 .

[39]  X.-K. Sun,et al.  Simulation of Cold Die Compaction Densification Behaviour of Iron and Copper Powders by Cam–clay Model , 1997 .

[40]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[41]  Robert L. Taylor,et al.  Two material models for cyclic plasticity: nonlinear kinematic hardening and generalized plasticity , 1995 .

[42]  Chandrakant S. Desai,et al.  A concept of correction functions to account for non-associative characteristics of geologic media , 1980 .

[43]  Roland W. Lewis,et al.  Adaptive finite element remeshing in a large deformation analysis of metal powder forming , 1999 .

[44]  S. M. Doraivelu,et al.  A new yield function for compressible PM materials , 1984 .

[45]  Roland W. Lewis,et al.  Numerical Modelling of Powder Compaction Processes: Displacement Based Finite Element Method , 1993 .