Multiple recurrence and convergence along the primes

Let $E\subset \Bbb{Z}$ be a set of positive upper density. Suppose that $P_1,P_2,\ldots,P_k\in {\Bbb Z}[X]$ are polynomials having zero constant terms. We show that the set $E\cap (E-P_1(p-1))\cap\cdots\cap (E-P_k(p-1))$ is non-empty for some prime number $p$. Furthermore, we prove convergence in $L^2$ of polynomial multiple averages along the primes.

[1]  Hugh L. Montgomery,et al.  Multiplicative Number Theory I: Classical Theory , 2006 .

[2]  Bryna Kra,et al.  Multiple recurrence and convergence for sequences related to the prime numbers , 2006, math/0607637.

[3]  E. Lesigne,et al.  Intersective polynomials and the polynomial Szemerédi theorem , 2007, 0710.4862.

[4]  H. Davenport Multiplicative Number Theory , 1967 .

[5]  Vitaly Bergelson,et al.  Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .

[6]  T. Tao,et al.  The Mobius function is strongly orthogonal to nilsequences , 2008, 0807.1736.

[7]  J. Bourgain An approach to pointwise ergodic theorems , 1988 .

[8]  Ben Green,et al.  An inverse theorem for the Gowers U^{s+1}[N]-norm (announcement) , 2010, 1009.3998.

[9]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[10]  A. Leibman Convergence of multiple ergodic averages along polynomials of several variables , 2005 .

[11]  Ben Green,et al.  Linear equations in primes , 2006, math/0606088.

[12]  Budapest,et al.  ON DIFFERENCE SETS OF SEQUENCES OF INTEGERS , 2002 .

[13]  T. Tao,et al.  The Mobius function is strongly orthogonal to nilsequences , 2012 .

[14]  T. Tao,et al.  The primes contain arbitrarily long polynomial progressions , 2006, math/0610050.

[15]  M. Wierdl Almost everywhere convergence and recurrence along subsequences in ergodic theory , 1989 .

[16]  Ben Green,et al.  AN INVERSE THEOREM FOR THE GOWERS U4-NORM , 2005, Glasgow Mathematical Journal.

[17]  V. Bergelson Weakly mixing PET , 1987, Ergodic Theory and Dynamical Systems.

[18]  Difference sets and the primes , 2007, 0710.0644.

[19]  Hongze Li,et al.  Difference sets and Polynomials of prime variables , 2007, 0709.1758.

[20]  M. Wierdl Pointwise ergodic theorem along the prime numbers , 1988 .

[21]  Terence Tao,et al.  An inverse theorem for the Gowers U^{s+1}[N]-norm , 2010 .

[22]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[23]  Jason Lucier Difference sets and shifted primes , 2007, 0705.3749.

[24]  A. Sárközy,et al.  On difference sets of sequences of integers. III , 1978 .

[25]  A. Leibman Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold , 2004, Ergodic Theory and Dynamical Systems.

[26]  Ben Green,et al.  AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.

[27]  A. Leibman Multiple polynomial correlation sequences and nilsequences , 2009, Ergodic Theory and Dynamical Systems.