Applications of deep neural networks to protein structure prediction

................................................................................................................... xiv Chapter

[1]  K. Chou,et al.  Classification and Prediction of β-Turn Types , 1997, Journal of protein chemistry.

[2]  Andrew Zisserman,et al.  Deep Convolutional Neural Networks for Efficient Pose Estimation in Gesture Videos , 2014, ACCV.

[3]  Claus Lundegaard,et al.  NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features , 2010, PloS one.

[4]  J. Garnier,et al.  Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. , 1978, Journal of molecular biology.

[5]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[6]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[7]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[8]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Jian Zhou,et al.  Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction , 2014, ICML.

[10]  B. Rost,et al.  Conservation and prediction of solvent accessibility in protein families , 1994, Proteins.

[11]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[12]  V. T. Ivanov,et al.  Conformational studies of peptide systems. The rotational states of the NH--CH fragment of alanine dipeptides by nuclear magnetic resonance. , 1969, Tetrahedron.

[13]  David S. Wishart,et al.  Improving the accuracy of protein secondary structure prediction using structural alignment , 2006, BMC Bioinformatics.

[14]  J. Thornton,et al.  A revised set of potentials for β‐turn formation in proteins , 1994 .

[15]  T. P. Flores,et al.  Prediction of beta-turns in proteins using neural networks. , 1989, Protein engineering.

[16]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[17]  K. Chou,et al.  Prediction of beta-turns. , 1979, Journal of protein chemistry.

[18]  M. Can Conformational Parameters for Amino Acids in Helical, β-Sheet, and Random Coil Regions Calculated from Proteins: After 40 Years , 2015, SOCO 2015.

[19]  Thomas L. Madden,et al.  Domain enhanced lookup time accelerated BLAST , 2012, Biology Direct.

[20]  Dmitrij Frishman,et al.  Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN). , 2008, Gene.

[21]  Ibon Alkorta,et al.  Similarity Study on Peptide γ-turn Conformation Mimetics , 1996 .

[22]  Yaoqi Zhou,et al.  Real‐SPINE: An integrated system of neural networks for real‐value prediction of protein structural properties , 2007, Proteins.

[23]  Liam J. McGuffin,et al.  The PSIPRED protein structure prediction server , 2000, Bioinform..

[24]  Geoffrey E. Hinton,et al.  Dynamic Routing Between Capsules , 2017, NIPS.

[25]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[26]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[27]  Alexey Drozdetskiy,et al.  JPred4: a protein secondary structure prediction server , 2015, Nucleic Acids Res..

[28]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[29]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[30]  J. Baik,et al.  Type I beta-turn conformation is important for biological activity of the melanocyte-stimulating hormone analogues. , 1999, European journal of biochemistry.

[31]  Chao Fang,et al.  MUFOLD‐SS: New deep inception‐inside‐inception networks for protein secondary structure prediction , 2018, Proteins.

[32]  Chun-Ting Zhang,et al.  Prediction of β‐turns in proteins by 1‐4 and 2‐3 correlation model , 1997 .

[33]  Tu Bao Ho,et al.  Support Vector Machines for Prediction and Analysis of Beta and Gamma-turns in Proteins , 2005, J. Bioinform. Comput. Biol..

[34]  Alan Wee-Chung Liew,et al.  Sequence-Based Prediction of Protein-Carbohydrate Binding Sites Using Support Vector Machines , 2016, J. Chem. Inf. Model..

[35]  Janet M. Thornton,et al.  From protein structure to biochemical function? , 2004, Journal of Structural and Functional Genomics.

[36]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[37]  Jiangming Sun,et al.  Improving the performance of β-turn prediction using predicted shape strings and a two-layer support vector machine model , 2010, BMC Bioinformatics.

[38]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[39]  Harinder Singh,et al.  In silico platform for predicting and initiating β‐turns in a protein at desired locations , 2015, Proteins.

[40]  Nikos Komodakis,et al.  Wide Residual Networks , 2016, BMVC.

[41]  David S. Wishart,et al.  PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation , 2008, Nucleic Acids Res..

[42]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[43]  Yuedong Yang,et al.  Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction. , 2009, Structure.

[44]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  B. Lee,et al.  Estimation and use of protein backbone angle probabilities. , 1993, Journal of molecular biology.

[46]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[47]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[48]  Gajendra P.S. Raghava,et al.  PEPstr: a de novo method for tertiary structure prediction of small bioactive peptides. , 2007, Protein and peptide letters.

[49]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  A. Alix,et al.  High accuracy prediction of β‐turns and their types using propensities and multiple alignments , 2005 .

[51]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[52]  Kuldip K. Paliwal,et al.  Capturing non‐local interactions by long short‐term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility , 2017, Bioinform..

[53]  Y. Duan,et al.  Trends in template/fragment-free protein structure prediction , 2010, Theoretical chemistry accounts.

[54]  K. Guruprasad,et al.  Beta-and gamma-turns in proteins revisited: a new set of amino acid turn-type dependent positional preferences and potentials. , 2000, Journal of biosciences.

[55]  Christopher Bystroff,et al.  Improved pairwise alignment of proteins in the Twilight Zone using local structure predictions , 2005, 2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05).

[56]  Gajendra P. S. Raghava,et al.  A neural network method for prediction of ?-turn types in proteins using evolutionary information , 2004, Bioinform..

[57]  Pierre Baldi,et al.  SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity , 2014, Bioinform..

[58]  Bin Xue,et al.  Real‐value prediction of backbone torsion angles , 2008, Proteins.

[59]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[60]  Yun Zhang,et al.  Using predicted shape string to enhance the accuracy of γ-turn prediction , 2011, Amino Acids.

[61]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[62]  F. Sanger,et al.  The amino-acid sequence in the glycyl chain of insulin. , 1952, The Biochemical journal.

[63]  D. Baker,et al.  Improved recognition of native‐like protein structures using a combination of sequence‐dependent and sequence‐independent features of proteins , 1999, Proteins.

[64]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Zhen Li,et al.  Protein Secondary Structure Prediction Using Cascaded Convolutional and Recurrent Neural Networks , 2016, IJCAI.

[66]  Guoli Wang,et al.  PISCES: a protein sequence culling server , 2003, Bioinform..

[67]  G. Rose,et al.  Turns in peptides and proteins. , 1985, Advances in protein chemistry.

[68]  Sitao Wu,et al.  ANGLOR: A Composite Machine-Learning Algorithm for Protein Backbone Torsion Angle Prediction , 2008, PloS one.

[69]  Jonathan D. Hirst,et al.  Predicting β-turns and their types using predicted backbone dihedral angles and secondary structures , 2010, BMC Bioinformatics.

[70]  A. Biegert,et al.  Sequence context-specific profiles for homology searching , 2009, Proceedings of the National Academy of Sciences.

[71]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[72]  Yann Dauphin,et al.  Convolutional Sequence to Sequence Learning , 2017, ICML.

[73]  Yaoqi Zhou,et al.  Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates , 2011, Bioinform..

[74]  Philip E. Bourne,et al.  The Protein Data Bank, 1999– , 2006 .

[75]  Christian Cole,et al.  The Jpred 3 secondary structure prediction server , 2008, Nucleic Acids Res..

[76]  H A Scheraga,et al.  Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[78]  J. Gibrat,et al.  Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. , 1987, Journal of molecular biology.

[79]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[80]  Geoffrey Zweig,et al.  Context dependent recurrent neural network language model , 2012, 2012 IEEE Spoken Language Technology Workshop (SLT).

[81]  Ron Poet,et al.  Loops, bulges, turns and hairpins in proteins , 1987 .

[82]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[83]  Parviz Abdolmaleki,et al.  gamma-Turn types prediction in proteins using the support vector machines. , 2007, Journal of theoretical biology.

[84]  Pierre Baldi,et al.  SCRATCH: a protein structure and structural feature prediction server , 2005, Nucleic Acids Res..

[85]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[86]  H. Scheraga,et al.  Chain reversals in proteins. , 1973, Biochimica et biophysica acta.

[87]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[88]  R. Kretsinger,et al.  Proteins and their shape strings , 2005, IEEE Engineering in Medicine and Biology Magazine.

[89]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[90]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[91]  Kuldip K. Paliwal,et al.  Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins , 2016, Bioinform..

[92]  K. Karplus,et al.  Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry , 2003, Proteins.

[93]  Yaoqi Zhou,et al.  Characterizing the existing and potential structural space of proteins by large-scale multiple loop permutations. , 2011, Journal of molecular biology.

[94]  G. P. S. Raghava,et al.  BetaTPred : prediction of β-TURNS in a protein using statistical algorithms , 2002 .

[95]  Chao Fang,et al.  Prediction of Protein Backbone Torsion Angles Using Deep Residual Inception Neural Networks , 2019, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[96]  Narayanan Eswar,et al.  Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.

[97]  Ah Chung Tsoi,et al.  Face recognition: a convolutional neural-network approach , 1997, IEEE Trans. Neural Networks.

[98]  Lukasz A. Kurgan,et al.  Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments , 2008, BMC Bioinformatics.

[99]  K. Guruprasad,et al.  Combinations of turns in proteins. , 2003, The journal of peptide research : official journal of the American Peptide Society.

[100]  Malcolm J. McGregor,et al.  Prediction of ?-turns in proteins using neural network , 1989 .

[101]  Guosheng Lin,et al.  Deep convolutional neural fields for depth estimation from a single image , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  A. Biegert,et al.  HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment , 2011, Nature Methods.

[103]  Diogo Almeida,et al.  Resnet in Resnet: Generalizing Residual Architectures , 2016, ArXiv.

[104]  Wei Zhang,et al.  SP5: Improving Protein Fold Recognition by Using Torsion Angle Profiles and Profile-Based Gap Penalty Model , 2008, PloS one.

[105]  Yaohang Li,et al.  Context-Based Features Enhance Protein Secondary Structure Prediction Accuracy , 2014, J. Chem. Inf. Model..

[106]  An-Suei Yang,et al.  Protein backbone angle prediction with machine learning approaches , 2004, Bioinform..

[107]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[108]  Lukás Burget,et al.  Recurrent neural network based language model , 2010, INTERSPEECH.

[109]  Johannes Stallkamp,et al.  The German Traffic Sign Recognition Benchmark: A multi-class classification competition , 2011, The 2011 International Joint Conference on Neural Networks.

[110]  Nanjiang Shu,et al.  A novel method for accurate one-dimensional protein structure prediction based on fragment matching , 2010, Bioinform..

[111]  Gan Rui,et al.  Weighted residuals for very deep networks , 2016 .

[112]  Sitao Wu,et al.  MUSTER: Improving protein sequence profile–profile alignments by using multiple sources of structure information , 2008, Proteins.

[113]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[114]  P Parham,et al.  Structure, function, and diversity of class I major histocompatibility complex molecules. , 1990, Annual review of biochemistry.

[115]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[116]  Kuldip K. Paliwal,et al.  Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto‐encoder deep neural network , 2014, J. Comput. Chem..

[117]  Yaoqi Zhou,et al.  Improving the prediction accuracy of residue solvent accessibility and real‐value backbone torsion angles of proteins by guided‐learning through a two‐layer neural network , 2009, Proteins.

[118]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[119]  Jie Hou,et al.  Deep learning methods for protein torsion angle prediction , 2017, BMC Bioinformatics.

[120]  Aleksey Porollo,et al.  PROTEINS: Structure, Function, and Bioinformatics 56:753–767 (2004) Accurate Prediction of Solvent Accessibility Using Neural Networks–Based Regression , 2022 .

[121]  James G. Lyons,et al.  SPIDER2: A Package to Predict Secondary Structure, Accessible Surface Area, and Main-Chain Torsional Angles by Deep Neural Networks. , 2017, Methods in molecular biology.

[122]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[123]  Xiuzhen Hu,et al.  Using support vector machine to predict β‐ and γ‐turns in proteins , 2008, J. Comput. Chem..

[124]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[125]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[126]  Thomas L. Madden,et al.  Protein sequence similarity searches using patterns as seeds. , 1998, Nucleic acids research.

[127]  Navdeep Jaitly,et al.  Next-Step Conditioned Deep Convolutional Neural Networks Improve Protein Secondary Structure Prediction , 2017, ArXiv.

[128]  K. Wuethrich NMR with Proteins and Nucleic Acids , 1988 .

[129]  Alessandro Vullo,et al.  Protein Structural Motif Prediction in Multidimensional ø-Psi Space Leads to Improved Secondary Structure Prediction , 2006, J. Comput. Biol..

[130]  Hui Han,et al.  Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning , 2005, ICIC.

[131]  Andrej Sali,et al.  Comparative Protein Structure Modeling and its Applications to Drug Discovery , 2004 .

[132]  D Gorse,et al.  Prediction of the location and type of β‐turns in proteins using neural networks , 1999, Protein science : a publication of the Protein Society.

[133]  Ehsaneddin Asgari,et al.  Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics , 2015, PloS one.

[134]  L. Pauling,et al.  The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[135]  I. Tomek,et al.  Two Modifications of CNN , 1976 .