Theory and Practice in the Motion Planning and Control of a Flexible Robot Arm Using Mikusiński Operators

[1]  D. Buchsbaum,et al.  What Makes a Complex Exact , 1973 .

[2]  D. Quillen Projective modules over polynomial rings , 1976 .

[3]  A. Suslin Projective modules over polynomial rings are free , 1976 .

[4]  A. Bejczy,et al.  A novel approach to the modelling and control of flexible robot arms , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[5]  Bruno Siciliano,et al.  Trajectory control of a non-linear one-link flexible arm , 1989 .

[6]  Eduardo Bayo,et al.  Inverse Dynamics and Kinematics of Multi- Link Elastic Robots: An Iterative Frequency Domain Approach , 1989, Int. J. Robotics Res..

[7]  M. Fliess Some basic structural properties of generalized linear systems , 1991 .

[8]  Jean-Pierre Ramis,et al.  Séries divergentes et théories asymptotiques , 1993 .

[9]  Yannick Aoustin,et al.  Experimental results for the end-effector control of a single flexible robotic arm , 1994, IEEE Trans. Control. Syst. Technol..

[10]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[11]  Michel Fliess,et al.  Interpretation and Comparison of Various Types of Delay System Controllabilities 1 , 1995 .

[12]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[13]  Jung-Keun Cho,et al.  Vibration reduction in flexible systems using a time-varying impulse sequence , 1995, Robotica.

[14]  E. Zuazua,et al.  Analyse spectrale et contrôle d'un système hybride composé de deux poutres connectées par une masse ponctuelle , 1996 .

[15]  Yannick Aoustin,et al.  On the Synthesis of a Nominal Trajectory for Control Law of a One-Link Flexible Arm , 1997, Int. J. Robotics Res..

[16]  Hugues Mounier,et al.  Algebraic interpretations of the spectral controllability of a linear delay system , 1998 .