Directed Multiobjective Optimization Based on the Weighted Hypervolume Indicator

Recently, there has been a large interest in set-based evolutionary algorithms for multi objective optimization. They are based on the definition of indicators that characterize the quality of the current population while being compliant with the concept of Pareto-optimality. It has been shown that the hypervolume indicator, which measures the dominated volume in the objective space, enables the design of efficient search algorithms and, at the same time, opens up opportunities to express user preferences in the search by means of weight functions. The present paper contains the necessary theoretical foundations and corresponding algorithms to (i) select appropriate weight functions, to (ii) transform user preferences into weight functions and to (iii) efficiently evaluate the weighted hypervolume indicator through Monte Carlo sampling. The algorithm W-HypE, which implements the previous concepts, is introduced, and the effectiveness of the search, directed towards the user's preferred solutions, is shown using an extensive set of experiments including the necessary statistical performance assessment. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[2]  C J Scheirer,et al.  The analysis of ranked data derived from completely randomized factorial designs. , 1976, Biometrics.

[3]  T. Obremski Practical Nonparametric Statistics (2nd ed.) , 1981 .

[4]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[7]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[8]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[9]  Andrzej P. Wierzbicki,et al.  Reference Point Approaches , 1999 .

[10]  David J. Groggel,et al.  Practical Nonparametric Statistics , 2000, Technometrics.

[11]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[12]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[13]  Marco Laumanns,et al.  Scalable test problems for evolutionary multi-objective optimization , 2001 .

[14]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[15]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[16]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[17]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[18]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[19]  Jonathan E. Fieldsend,et al.  Full Elite Sets for Multi-Objective Optimisation , 2002 .

[20]  M. Fleischer,et al.  The Measure of Pareto Optima , 2003, EMO.

[21]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[22]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[23]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[24]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[25]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[26]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[27]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[28]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[29]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[30]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[31]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[32]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.

[33]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[34]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[35]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[36]  Kalyanmoy Deb,et al.  Faster Hypervolume-Based Search Using Monte Carlo Sampling , 2008, MCDM.

[37]  Lothar Thiele,et al.  Quality Assessment of Pareto Set Approximations , 2008, Multiobjective Optimization.

[38]  Lucas Bradstreet,et al.  A Fast Incremental Hypervolume Algorithm , 2008, IEEE Transactions on Evolutionary Computation.

[39]  Frank Neumann,et al.  Multiplicative approximations and the hypervolume indicator , 2009, GECCO.

[40]  Tobias Friedrich,et al.  Don't be greedy when calculating hypervolume contributions , 2009, FOGA '09.

[41]  Lucas Bradstreet,et al.  Updating exclusive hypervolume contributions cheaply , 2009, 2009 IEEE Congress on Evolutionary Computation.

[42]  Anne Auger,et al.  Articulating user preferences in many-objective problems by sampling the weighted hypervolume , 2009, GECCO.

[43]  Anne Auger,et al.  Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences , 2009, GECCO.

[44]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[45]  Tobias Friedrich,et al.  Approximating the Least Hypervolume Contributor: NP-Hard in General, But Fast in Practice , 2009, EMO.

[46]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[47]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[48]  Heike Trautmann,et al.  Integration of Preferences in Hypervolume-Based Multiobjective Evolutionary Algorithms by Means of Desirability Functions , 2010, IEEE Transactions on Evolutionary Computation.

[49]  Tobias Friedrich,et al.  Scaling up indicator-based MOEAs by approximating the least hypervolume contributor: a preliminary study , 2010, GECCO '10.

[50]  Tobias Friedrich,et al.  Approximating the volume of unions and intersections of high-dimensional geometric objects , 2008, Comput. Geom..

[51]  Frank Neumann,et al.  Set-based multi-objective optimization, indicators, and deteriorative cycles , 2010, GECCO '10.

[52]  Lothar Thiele,et al.  On Set-Based Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[53]  Liu Liu,et al.  A fast steady-state ε-dominance multi-objective evolutionary algorithm , 2011, Comput. Optim. Appl..

[54]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[55]  Carlos M. Fonseca,et al.  Computing Hypervolume Contributions in Low Dimensions: Asymptotically Optimal Algorithm and Complexity Results , 2011, EMO.

[56]  Evan J. Hughes,et al.  Many-objective directed evolutionary line search , 2011, GECCO '11.

[57]  Tobias Friedrich,et al.  Approximating the least hypervolume contributor: NP-hard in general, but fast in practice , 2008, Theor. Comput. Sci..

[58]  Anne Auger,et al.  Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications , 2012, Theor. Comput. Sci..

[59]  Kalyanmoy Deb,et al.  Handling many-objective problems using an improved NSGA-II procedure , 2012, 2012 IEEE Congress on Evolutionary Computation.

[60]  Tobias Friedrich,et al.  Parameterized average-case complexity of the hypervolume indicator , 2013, GECCO '13.