Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets

We use cosmological simulations to study a characteristic evolution pattern of high redshift galaxies. Early, stream-fed, highly perturbed, gas-rich discs undergo phases of dissipative contraction into compact, star-forming systems (blue nuggets) at z~4-2. The peak of gas compaction marks the onset of central gas depletion and inside-out quenching into compact ellipticals (red nuggets) by z~2. These are sometimes surrounded by gas rings or grow extended dry stellar envelopes. The compaction occurs at a roughly constant specific star-formation rate (SFR), and the quenching occurs at a constant stellar surface density within the inner kpc ($\Sigma_1$). Massive galaxies quench earlier, faster, and at a higher $\Sigma_1$ than lower-mass galaxies, which compactify and attempt to quench more than once. This evolution pattern is consistent with the way galaxies populate the SFR-radius-mass space, and with gradients and scatter across the main sequence. The compaction is triggered by an intense inflow episode, involving (mostly minor) mergers, counter-rotating streams or recycled gas, and is commonly associated with violent disc instability. The contraction is dissipative, with the inflow rate >SFR, and the maximum $\Sigma_1$ anti-correlated with the initial spin parameter, as predicted by Dekel & Burkert (2014). The central quenching is triggered by the high SFR and stellar/supernova feedback (possibly also AGN feedback) due to the high central gas density, while the central inflow weakens as the disc vanishes. Suppression of fresh gas supply by a hot halo allows the long-term maintenance of quenching once above a threshold halo mass, inducing the quenching downsizing.

[1]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[2]  O. Ilbert,et al.  NEWLY QUENCHED GALAXIES AS THE CAUSE FOR THE APPARENT EVOLUTION IN AVERAGE SIZE OF THE POPULATION , 2013, 1302.5115.

[3]  A. Dekel,et al.  Gravitational quenching in massive galaxies and clusters by clumpy accretion , 2007, 0707.1214.

[4]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[5]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[6]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[7]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[8]  A. Dekel,et al.  Rotational support of giant clumps in high-z disc galaxies , 2011, 1106.5587.

[9]  T. Thompson,et al.  Numerical simulations of radiatively driven dusty winds , 2013, 1302.4440.

[10]  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[11]  Charles F. Gammie,et al.  Nonlinear Outcome of Gravitational Instability in Cooling, Gaseous Disks , 2001, astro-ph/0101501.

[12]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[13]  R. Teyssier,et al.  Coplanar streams, pancakes and angular‐momentum exchange in high‐z disc galaxies , 2011, 1110.6209.

[14]  J. Newman,et al.  Dependence of galaxy quenching on halo mass and distance from its centre , 2012, 1203.1625.

[15]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[16]  S. Ravindranath,et al.  THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT , 2013, 1310.3819.

[17]  Marijn Franx,et al.  THE SIZE EVOLUTION OF GALAXIES SINCE Z ∼ 3: COMBINING SDSS, GEMS AND FIRES 1 , 2006 .

[18]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[19]  Natural downsizing in hierarchical galaxy formation , 2006, astro-ph/0605045.

[20]  Harvard,et al.  Stellar feedback and bulge formation in clumpy discs , 2011, 1111.6591.

[21]  A. Dekel,et al.  Evolution of violent gravitational disc instability in galaxies: late stabilization by transition from gas to stellar dominance , 2011, 1110.2412.

[22]  Cea,et al.  RED NUGGETS AT z ∼ 1.5: COMPACT PASSIVE GALAXIES AND THE FORMATION OF THE KORMENDY RELATION , 2008, 0807.1744.

[23]  B. Elmegreen,et al.  Central Blue Clumps in Elliptical Galaxies of the Hubble Ultra Deep Field , 2005, astro-ph/0504033.

[24]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[25]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[26]  D. Hunter,et al.  SHRINKING GALAXY DISKS WITH FOUNTAIN-DRIVEN ACCRETION FROM THE HALO , 2014, 1411.0332.

[27]  C. Baugh,et al.  Evolution of the Hubble sequence in hierarchical models for galaxy formation , 1996, astro-ph/9602085.

[28]  S. Faber,et al.  The star-forming progenitors of massive red galaxies , 2013, 1301.2067.

[29]  D. Quach,et al.  Kelvin–Helmholtz instability of counter-rotating discs , 2014, 1408.5625.

[30]  Andreas Burkert,et al.  THE SINS/zC-SINF SURVEY OF z ∼ 2GALAXY KINEMATICS: THE NATURE OF DISPERSION-DOMINATED GALAXIES , 2012, 1211.6160.

[31]  M. Dopita,et al.  The insignificance of major mergers in driving star formation at z ≃ 2 , 2012, 1210.4160.

[32]  H. Rix,et al.  A massive galaxy in its core formation phase three billion years after the Big Bang , 2014, Nature.

[33]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[34]  Jeremiah P. Ostriker,et al.  THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.

[35]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[36]  E. Quataert,et al.  THE DISRUPTION OF GIANT MOLECULAR CLOUDS BY RADIATION PRESSURE & THE EFFICIENCY OF STAR FORMATION IN GALAXIES , 2009, 0906.5358.

[37]  David R. Law,et al.  A HST/WFC3-IR MORPHOLOGICAL SURVEY OF GALAXIES AT z = 1.5–3.6. II. THE RELATION BETWEEN MORPHOLOGY AND GAS-PHASE KINEMATICS , 2012, 1206.6889.

[38]  Determining the Properties and Evolution of Red Galaxies from the Quasar Luminosity Function , 2005, astro-ph/0508167.

[39]  S. Ravindranath,et al.  THE INTERSTELLAR MEDIUM AND FEEDBACK IN THE PROGENITORS OF THE COMPACT PASSIVE GALAXIES AT z  ∼  2 , 2014, 1407.1834.

[40]  India,et al.  Resolved Galaxies in the Hubble Ultra Deep Field: Star Formation in Disks at High Redshift , 2007 .

[41]  G. Zamorani,et al.  THE SINS/zC-SINF SURVEY OF z ∼ 2 GALAXY KINEMATICS: EVIDENCE FOR GRAVITATIONAL QUENCHING , 2013, 1310.3838.

[42]  D.Lutz,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES* , 2012 .

[43]  Carnegie,et al.  CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT z ∼ 2 , 2012, 1206.5000.

[44]  J. Ostriker,et al.  Radiative Feedback from Massive Black Holes in Elliptical Galaxies: AGN Flaring and Central Starburst Fueled by Recycled Gas , 2007, astro-ph/0703057.

[45]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[46]  Christopher E. Moody,et al.  CANDELS+3D-HST: COMPACT SFGs AT z ∼ 2–3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES , 2013, 1311.5559.

[47]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[48]  R. Somerville,et al.  Understanding the structural scaling relations of early-type galaxies , 2014, 1407.0594.

[49]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[50]  D. Hunter,et al.  IN-SPIRALING CLUMPS IN BLUE COMPACT DWARF GALAXIES , 2012, 1201.3658.

[51]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[52]  A. V. Koldoba,et al.  Counter-rotating accretion discs , 2014, 1408.5626.

[53]  C. Conselice,et al.  THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 ⩽ z < 0.8 IN THE DEEP2/AEGIS SURVEY , 2012, 1210.4173.

[54]  Romain Teyssier,et al.  HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS , 2010, 1006.4782.

[55]  P. Dokkum,et al.  A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.

[56]  B. G. Elmegreen,et al.  Rapid Formation of Exponential Disks and Bulges at High Redshift from the Dynamical Evolution of Clump-Cluster and Chain Galaxies , 2007, 0708.0306.

[57]  D. Schiminovich,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – III. Comparison with semi-analytic models of galaxy formation , 2012, 1202.2972.

[58]  Jonathan Devor,et al.  Galactic halo cusp–core: tidal compression in mergers , 2003 .

[59]  A. Dekel,et al.  Wet Disc Contraction to Galactic Blue Nuggets and Quenching to Red Nuggets , 2013, 1310.1074.

[60]  D. Elbaz,et al.  Observations and modeling of a clumpy galaxy at z = 1.6 - Spectroscopic clues to the origin and evolution of chain galaxies , 2008, 0803.3831.

[61]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[62]  Feedback, Disk Self-Regulation, and Galaxy Formation , 1996, astro-ph/9612117.

[63]  V. Springel,et al.  The formation of massive, compact galaxies at z = 2 in the Illustris simulation , 2014, 1411.0667.

[64]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[65]  Christopher E. Moody,et al.  Diverse structural evolution at z > 1 in cosmologically simulated galaxies , 2014, 1409.1583.

[66]  M. Krumholz,et al.  ON THE DYNAMICS AND EVOLUTION OF GRAVITATIONAL INSTABILITY-DOMINATED DISKS , 2010, 1003.4513.

[67]  A. Dekel,et al.  Steady outflows in giant clumps of high-z disc galaxies during migration and growth by accretion , 2013, 1302.4457.

[68]  V. A. Bruce,et al.  The Bulge–Disc Decomposed Evolution of Massive Galaxies at 1 z < 3 in CANDELS , 2014, 1405.1736.

[69]  R. Teyssier,et al.  BLACK HOLE GROWTH AND ACTIVE GALACTIC NUCLEI OBSCURATION BY INSTABILITY-DRIVEN INFLOWS IN HIGH-REDSHIFT DISK GALAXIES FED BY COLD STREAMS , 2011, 1107.1483.

[70]  M. Dopita,et al.  Newborn spheroids at high redshift : When and how did the dominant, old stars in today's massive galaxies form? , 2012, 1206.2360.

[71]  S. Wuyts,et al.  DENSE CORES IN GALAXIES OUT TO z = 2.5 IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS , 2014, 1404.4874.

[72]  A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS , 2011, 1109.4150.

[73]  Christopher E. Moody,et al.  Star formation and clumps in cosmological galaxy simulations with radiation pressure feedback , 2014, 1405.5266.

[74]  A. Dekel,et al.  Balance among gravitational instability, star formation and accretion determines the structure and evolution of disc galaxies , 2013, 1305.2925.

[75]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[76]  A. Dekel,et al.  Merger rates of dark matter haloes , 2008, 0802.0198.

[77]  A. Dekel,et al.  Toy models for galaxy formation versus simulations , 2013, 1303.3009.

[78]  A. Klypin,et al.  THE ROLE OF STELLAR FEEDBACK IN THE FORMATION OF GALAXIES , 2007, 0712.3285.

[79]  F. Bournaud,et al.  Starbursts triggered by intergalactic tides andinterstellar compressive turbulence , 2014, 1403.7316.

[80]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[81]  A. Dekel,et al.  METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES , 2011, 1106.0301.

[82]  F. Bournaud,et al.  UNSTABLE DISKS AT HIGH REDSHIFT: EVIDENCE FOR SMOOTH ACCRETION IN GALAXY FORMATION , 2009, 0902.2806.

[83]  T. Treu,et al.  KECK SPECTROSCOPY OF z>1 FIELD SPHEROIDALS: DYNAMICAL CONSTRAINTS ON THE GROWTH RATE OF RED “NUGGETS” , 2010, 1004.1331.

[84]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[85]  Andreas Bauer,et al.  Shocking results without shocks: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations , 2011, 1109.4413.

[86]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[87]  J. Blaizot,et al.  Building merger trees from cosmological N-body simulations. Towards improving galaxy formation model , 2009, 0902.0679.

[88]  M. Krumholz,et al.  Evolving gravitationally unstable disks over cosmic time: implications for thick disk formation , 2011, 1112.1410.

[89]  Henry C. Ferguson,et al.  CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z ∼ 2 , 2013, 1306.4980.

[90]  A. Dekel,et al.  Early formation of massive, compact, spheroidal galaxies with classical profiles by violent disc instability or mergers , 2014, 1409.2622.

[91]  A. Dekel,et al.  An analytic solution for the minimal bathtub toy model: challenges in the star formation history of high-z galaxies , 2014, 1402.2283.

[92]  A. N. V. K. Ravtsov,et al.  TOWARDS A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS , 2012 .

[93]  J. Trump,et al.  KECK-I MOSFIRE SPECTROSCOPY OF COMPACT STAR-FORMING GALAXIES AT z ≳ 2: HIGH VELOCITY DISPERSIONS IN PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1405.7042.

[94]  C. Jog EFFECTIVE Q CRITERION FOR DISK STABILITY IN AN EXTERNAL POTENTIAL , 2014 .

[95]  R. Feldmann,et al.  The Argo simulation – I. Quenching of massive galaxies at high redshift as a result of cosmological starvation , 2014, 1404.3212.

[96]  R. Davé,et al.  Galaxies in a simulated ΛCDM Universe – I. Cold mode and hot cores , 2008, 0809.1430.

[97]  S. M. Fall,et al.  ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED: EFFECTS OF VARIABLE MASS-TO-LIGHT RATIOS , 2013, 1305.1626.

[98]  F. Boone,et al.  COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS , 2014, 1409.1171.

[99]  U. Diego,et al.  Moving mesh cosmology: tracing cosmological gas accretion , 2013, 1301.6753.

[100]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[101]  Early Evolution of Disk Galaxies: Formation of Bulges in Clumpy Young Galactic Disks , 1998, astro-ph/9806355.

[102]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[103]  Gas physics, disk fragmentation, and bulge formation in young galaxies , 2003, astro-ph/0312139.

[104]  S. Faber,et al.  Two conditions for galaxy quenching: compact centres and massive haloes , 2014, 1406.5372.

[105]  Risa H. Wechsler,et al.  ON THE LACK OF EVOLUTION IN GALAXY STAR FORMATION EFFICIENCY , 2012, 1209.3013.

[106]  Concentrations of Dark Halos from Their Assembly Histories , 2001, astro-ph/0108151.

[107]  G. Cresci,et al.  HIGH-REDSHIFT STAR-FORMING GALAXIES: ANGULAR MOMENTUM AND BARYON FRACTION, TURBULENT PRESSURE EFFECTS, AND THE ORIGIN OF TURBULENCE , 2009, 0907.4777.

[108]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[109]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[110]  A. Kravtsov,et al.  TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS , 2012, 1210.4957.

[111]  C. Jog Jeans instability criterion modified by external tidal field , 2013, 1306.4425.

[112]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[113]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[114]  R. Teyssier,et al.  The ATLAS3D project - XXII. Low-efficiency star formation in early-type galaxies: hydrodynamic models and observations , 2012, 1212.2288.

[115]  M. Noguchi Clumpy star-forming regions as the origin of the peculiar morphology of high-redshift galaxies , 1998, Nature.

[116]  A. Dekel,et al.  The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival , 2013, 1311.0013.

[117]  G. Brammer,et al.  A LARGE POPULATION OF MASSIVE COMPACT POST-STARBURST GALAXIES AT z > 1: IMPLICATIONS FOR THE SIZE EVOLUTION AND QUENCHING MECHANISM OF QUIESCENT GALAXIES , 2011, 1112.0313.

[118]  S. Khochfar,et al.  Adding Environmental Gas Physics to the Semianalytic Method for Galaxy Formation: Gravitational Heating , 2007, 0704.2418.

[119]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[120]  G. Graves,et al.  Modelling the ages and metallicities of early-type galaxies in Fundamental Plane space , 2014, 1407.2186.

[121]  M. Romanova,et al.  STABILITY OF THE MAGNETOPAUSE OF DISK-ACCRETING ROTATING STARS , 2009, 0905.1071.

[122]  R. Teyssier,et al.  Disc formation and the origin of clumpy galaxies at high redshift , 2009, Monthly Notices of the Royal Astronomical Society: Letters.

[123]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[124]  J. Trump,et al.  KECK-I MOSFIRE SPECTROSCOPY OF COMPACT STAR-FORMING GALAXIES AT z ≳ 2: HIGH VELOCITY DISPERSIONS IN PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1405.7042.

[125]  P. Hopkins A new class of accurate, mesh-free hydrodynamic simulation methods , 2014, 1409.7395.

[126]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[127]  G. Chabrier The Initial Mass Function: From Salpeter 1955 to 2005 , 2004, astro-ph/0409465.

[128]  L. Hernquist,et al.  Fueling Starburst Galaxies with Gas-rich Mergers , 1991 .

[129]  Hia,et al.  RED NUGGETS AT HIGH REDSHIFT: STRUCTURAL EVOLUTION OF QUIESCENT GALAXIES OVER 10 Gyr OF COSMIC HISTORY , 2011, 1108.0656.

[130]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[131]  A. Dekel,et al.  Survival of star-forming giant clumps in high-redshift galaxies , 2010, 1001.0765.

[132]  Extremely compact massive galaxies at z ~ 1.4 , 2006, astro-ph/0608657.

[133]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[134]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[135]  A. Dekel,et al.  Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift , 2013, 1307.0943.

[136]  R. Teyssier,et al.  MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED , 2009, 0905.4669.

[137]  M. Steinmetz,et al.  The role of black holes in galaxy formation and evolution , 2009, Nature.

[138]  S. Faber,et al.  A LINK BETWEEN STAR FORMATION QUENCHING AND INNER STELLAR MASS DENSITY IN SLOAN DIGITAL SKY SURVEY CENTRAL GALAXIES , 2013, 1308.5224.

[139]  A. Dekel,et al.  Four phases of angular-momentum buildup in high-z galaxies: from cosmic-web streams through an extended ring to disc and bulge , 2014, 1407.7129.

[140]  A. Dekel,et al.  High-redshift clumpy discs and bulges in cosmological simulations , 2009, 0907.3271.