A Probabilistic Theory of Pattern Recognition

Preface * Introduction * The Bayes Error * Inequalities and alternatedistance measures * Linear discrimination * Nearest neighbor rules *Consistency * Slow rates of convergence Error estimation * The regularhistogram rule * Kernel rules Consistency of the k-nearest neighborrule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-Chervonenkis theory * Lower bounds for empirical classifier selection* The maximum likelihood principle * Parametric classification *Generalized linear discrimination * Complexity regularization *Condensed and edited nearest neighbor rules * Tree classifiers * Data-dependent partitioning * Splitting the data * The resubstitutionestimate * Deleted estimates of the error probability * Automatickernel rules * Automatic nearest neighbor rules * Hypercubes anddiscrete spaces * Epsilon entropy and totally bounded sets * Uniformlaws of large numbers * Neural networks * Other error estimates *Feature extraction * Appendix * Notation * References * Index

[1]  A E Bostwick,et al.  THE THEORY OF PROBABILITIES. , 1896, Science.

[2]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[3]  H. Wold,et al.  Some Theorems on Distribution Functions , 1936 .

[4]  H. Scheffé A Useful Convergence Theorem for Probability Distributions , 1947 .

[5]  C. Goffman On Lebesgue’s density theorem , 1950 .

[6]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[7]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[8]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[9]  D. Stoller Univariate Two-Population Distribution-Free Discrimination , 1954 .

[10]  H. Akaike An approximation to the density function , 1954 .

[11]  J. Kiefer,et al.  Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator , 1956 .

[12]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[13]  K. Matusita Decision rule, based on the distance, for the classification problem , 1956 .

[14]  T. Broadbent Measure and Integral , 1957, Nature.

[15]  Hirosi Hudimoto A Note on the probability of the correct classification when the distributions are not specified , 1957 .

[16]  M. Okamoto Some inequalities relating to the partial sum of binomial probabilities , 1959 .

[17]  P. Mahalanobis A Method of Fractile Graphical Analysis , 1960 .

[18]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[19]  Dennis Gabor,et al.  A universal nonlinear filter, predictor and simulator which optimizes itself by a learning process , 1961 .

[20]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[21]  Homer R. Warner,et al.  A Mathematical Approach to Medical Diagnosis , 1961 .

[22]  George S. Sebestyen,et al.  Decision-making processes in pattern recognition , 1962 .

[23]  R. O. Winder,et al.  THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE , 1962 .

[24]  R. Rao Relations between Weak and Uniform Convergence of Measures with Applications , 1962 .

[25]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[26]  G. Bennett Probability Inequalities for the Sum of Independent Random Variables , 1962 .

[27]  The National Institute of Sciences of India , 1963, Nature.

[28]  J. Morgan,et al.  Problems in the Analysis of Survey Data, and a Proposal , 1963 .

[29]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[30]  Karl Steinbuch,et al.  Adaptive Systems in Pattern Recognition , 1963, IEEE Trans. Electron. Comput..

[31]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[32]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[33]  Michel Loève,et al.  Probability Theory I , 1977 .

[34]  E. Nadaraya On Estimating Regression , 1964 .

[35]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[36]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[37]  C. K. Chow,et al.  Statistical Independence and Threshold Functions , 1965, IEEE Trans. Electron. Comput..

[38]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[39]  C. Quesenberry,et al.  A nonparametric estimate of a multivariate density function , 1965 .

[40]  D. Sprecher On the structure of continuous functions of several variables , 1965 .

[41]  Nils J. Nilsson,et al.  Learning Machines: Foundations of Trainable Pattern-Classifying Systems , 1965 .

[42]  T. Cacoullos Estimation of a multivariate density , 1966 .

[43]  M. Hills Allocation Rules and Their Error Rates , 1966 .

[44]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[45]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[46]  S. Schwartz Estimation of Probability Density by an Orthogonal Series , 1967 .

[47]  C. G. Hilborn,et al.  The Condensed Nearest Neighbor Rule , 1967 .

[48]  E. Sampathkumar On a class of sets—I , 1967 .

[49]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[50]  N. Day,et al.  A general maximum likelihood discriminant. , 1967, Biometrics.

[51]  J. Elashoff,et al.  On the choice of variables in classification problems with dichotomous variables. , 1967, Biometrika.

[52]  P. Lachenbruch An almost unbiased method of obtaining confidence intervals for the probability of misclassification in discriminant analysis. , 1967, Biometrics.

[53]  Thomas M. Cover,et al.  Estimation by the nearest neighbor rule , 1968, IEEE Trans. Inf. Theory.

[54]  M. R. Mickey,et al.  Estimation of Error Rates in Discriminant Analysis , 1968 .

[55]  S. Yau,et al.  On the upper bound of the probability of error of a linear pattern classifier for probabilistic pattern classes , 1968 .

[56]  P. Heywood Trigonometric Series , 1968, Nature.

[57]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[58]  R. Kronmal,et al.  The Estimation of Probability Densities and Cumulatives by Fourier Series Methods , 1968 .

[59]  M. Gessaman,et al.  Nonparametric Discrimination Using Tolerance Regions , 1968 .

[60]  Shun-ichi Amari,et al.  A Theory of Pattern Recognition , 1968 .

[61]  A. H. Klopf,et al.  Recursive Estimates of Probability Densities , 1969, IEEE Trans. Syst. Sci. Cybern..

[62]  R. Sokal,et al.  A New Statistical Approach to Geographic Variation Analysis , 1969 .

[63]  F. Downton Stochastic Approximation , 1969, Nature.

[64]  T. Wagner,et al.  Asymptotically optimal discriminant functions for pattern classification , 1969, IEEE Trans. Inf. Theory.

[65]  Takayasu Ito Note on a Class of Statistical Recognition Functions , 1969, IEEE Transactions on Computers.

[66]  King-Sun Fu,et al.  A Nonparametric Partitioning Procedure for Pattern Classification , 1969, IEEE Transactions on Computers.

[67]  W. S. Meisel,et al.  Potential Functions in Mathematical Pattern Recognition , 1969, IEEE Transactions on Computers.

[68]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[69]  Abdel Hamid Ben-Tchikou On the Karhunen-Loeve expansion / , 1969 .

[70]  Edward A. Patrick,et al.  A Generalized k-Nearest Neighbor Rule , 1970, Inf. Control..

[71]  King-Sun Fu,et al.  Feature Selection in Pattern Recognition , 1970, IEEE Trans. Syst. Sci. Cybern..

[72]  Martin E. Hellman,et al.  The Nearest Neighbor Classification Rule with a Reject Option , 1970, IEEE Trans. Syst. Sci. Cybern..

[73]  Solomon Kullback,et al.  Correction to A Lower Bound for Discrimination Information in Terms of Variation , 1970, IEEE Trans. Inf. Theory.

[74]  H. Chernoff A BOUND ON THE CLASSIFICATION ERROR FOR DISCRIMINATING BETWEEN POPULATIONS WITH SPECIFIED MEANS AND VARIANCES. , 1970 .

[75]  L. Lecam On the Assumptions Used to Prove Asymptotic Normality of Maximum Likelihood Estimates , 1970 .

[76]  D. W. Peterson,et al.  Some convergence properties of a nearest neighbor decision rule , 1970, IEEE Trans. Inf. Theory.

[77]  Yasuichi Horibe On zero error probability of binary decisions (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[78]  G. Toussaint,et al.  Algorithms for Recognizing Contour-Traced Handprinted Characters , 1970, IEEE Transactions on Computers.

[79]  R. Kronmal,et al.  On Multivariate Density Estimates Based on Orthogonal Expansions , 1970 .

[80]  Marshall W. Anderson,et al.  A distribution-free discrimination procedure based on clustering , 1970, IEEE Trans. Inf. Theory.

[81]  M. Gessaman A Consistent Nonparametric Multivariate Density Estimator Based on Statistically Equivalent Blocks , 1970 .

[82]  C. K. Chow,et al.  On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.

[83]  H. Carnal Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten , 1970 .

[84]  D. Specht Series Estimation of a Probability Density Function , 1971 .

[85]  Terry J. Wagner,et al.  Convergence of the nearest neighbor rule , 1970, IEEE Trans. Inf. Theory.

[86]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[87]  A. G. Ivakhnenko,et al.  Polynomial Theory of Complex Systems , 1971, IEEE Trans. Syst. Man Cybern..

[88]  Keinosuke Fukunaga,et al.  Estimation of Classification Error , 1970, IEEE Transactions on Computers.

[89]  Jack Sklansky,et al.  Training a One-Dimensional Classifier to Minimize the Probability of Error , 1972, IEEE Trans. Syst. Man Cybern..

[90]  William S. Meisel,et al.  Computer-oriented approaches to pattern recognition , 1972 .

[91]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[92]  M. Gessaman,et al.  A Comparison of Some Multivariate Discrimination Procedures , 1972 .

[93]  GUY W. BEAKLEY,et al.  Distribution-Free Pattern Verification Using Statistically Equivalent Blocks , 1972, IEEE Transactions on Computers.

[94]  C. W. Swonger SAMPLE SET CONDENSATION FOR A CONDENSED NEAREST NEIGHBOR DECISION RULE FOR PATTERN RECOGNITION , 1972 .

[95]  Dennis L. Wilson,et al.  Asymptotic Properties of Nearest Neighbor Rules Using Edited Data , 1972, IEEE Trans. Syst. Man Cybern..

[96]  Larry D. Hostetler,et al.  Optimization of k nearest neighbor density estimates , 1973, IEEE Trans. Inf. Theory.

[97]  William S. Meisel,et al.  A Partitioning Algorithm with Application in Pattern Classification and the Optimization of Decision Trees , 1973, IEEE Transactions on Computers.

[98]  Terry J. Wagner Convergence of the edited nearest neighbor (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[99]  K. Matusita DISCRIMINATION AND THE AFFINITY OF DISTRIBUTIONS , 1973 .

[100]  Toomas R. Vilmansen,et al.  Feature Evalution with Measures of Probabilistic Dependence , 1973, IEEE Transactions on Computers.

[101]  Keinosuke Fukunaga,et al.  Nonparametric Bayes error estimation using unclassified samples , 1972, IEEE Trans. Inf. Theory.

[102]  L. Lecam Convergence of Estimates Under Dimensionality Restrictions , 1973 .

[103]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[104]  N. Glick Sample-Based Multinomial Classification , 1973 .

[105]  Thomas M. Cover,et al.  The Best Two Independent Measurements Are Not the Two Best , 1974, IEEE Trans. Syst. Man Cybern..

[106]  H. Akaike A new look at the statistical model identification , 1974 .

[107]  Kumpati S. Narendra,et al.  Adaptation and learning in automatic systems , 1974 .

[108]  R. Serfling Probability Inequalities for the Sum in Sampling without Replacement , 1974 .

[109]  J. Habbema A stepwise discriminant analysis program using density estimetion , 1974 .

[110]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[111]  Chin-Liang Chang,et al.  Finding Prototypes For Nearest Neighbor Classifiers , 1974, IEEE Transactions on Computers.

[112]  JAMES C. STOFFEL,et al.  A Classifier Design Technique for Discrete Variable Pattern Recognition Problems , 1974, IEEE Transactions on Computers.

[113]  Godfried T. Toussaint,et al.  Bibliography on estimation of misclassification , 1974, IEEE Trans. Inf. Theory.

[114]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[115]  Julian R. Ullmann,et al.  Automatic selection of reference data for use in a nearest-neighbor method of pattern classification (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[116]  B. Logan The uncertainty principle in reconstructing functions from projections , 1975 .

[117]  László Györfi,et al.  On the continuity of the error distortion function for multiple-hypothesis decisions (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[118]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Computing k-Nearest Neighbors , 1975, IEEE Transactions on Computers.

[119]  B. Logan,et al.  Optimal reconstruction of a function from its projections , 1975 .

[120]  Hugh B. Woodruff,et al.  An algorithm for a selective nearest neighbor decision rule (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[121]  Forest Baskett,et al.  An Algorithm for Finding Nearest Neighbors , 1975, IEEE Transactions on Computers.

[122]  I. Tomek,et al.  Two Modifications of CNN , 1976 .

[123]  J. Fritz,et al.  ON THE MINIMIZATION OF CLASSIFICATION ERROR PROBABILITY IN STATISTICAL PATTERN RECOGNITION. , 1976 .

[124]  J. Aitchison,et al.  Multivariate binary discrimination by the kernel method , 1976 .

[125]  Sahibsingh A. Dudani The Distance-Weighted k-Nearest-Neighbor Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[126]  Thomas P. Yunck,et al.  A Technique to Identify Nearest Neighbors , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[127]  King-Sun Fu,et al.  Error estimation in pattern recognition via LAlpha -distance between posterior density functions , 1976, IEEE Trans. Inf. Theory.

[128]  Mikhail Borisovich Nevelʹson,et al.  Stochastic Approximation and Recursive Estimation , 1976 .

[129]  R. Kronmal,et al.  Some Classification Procedures for Multivariate Binary Data Using Orthogonal Functions , 1976 .

[130]  Ivan Tomek,et al.  A Generalization of the k-NN Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[131]  Ned Glick,et al.  Sample-based classification procedures related to empiric distributions , 1976, IEEE Trans. Inf. Theory.

[132]  T. Wagner,et al.  Another Look at the Edited Nearest Neighbor Rule. , 1976 .

[133]  L. Devroye Nonparametric Discrimination and Density Estimation. , 1976 .

[134]  Luc Devroye,et al.  A distribution-free performance bound in error estimation (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[135]  David A. Landgrebe,et al.  Variance comparisons for unbiased estimators of probability of correct classification (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[136]  G. McLachlan Bias of Apparent Error Rate in Discriminant-Analysis , 1976 .

[137]  Saab Abou-Jaoudé Conditions nécessaires et suffisantes de convergence L1 en probabilité de l'histogramme pour une densité , 1976 .

[138]  Saab Abou-Jaoudé Sur la convergence L1 et L∞ de l'estimateur de la partition aléatoire pour une densité , 1976 .

[139]  Ishwar K. Sethi,et al.  Efficient decision tree design for discrete variable pattern recognition problems , 1977, Pattern Recognition.

[140]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[141]  Jan M. Van Campenhout,et al.  On the Possible Orderings in the Measurement Selection Problem , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[142]  Jerome H. Friedman,et al.  A Recursive Partitioning Decision Rule for Nonparametric Classification , 1977, IEEE Transactions on Computers.

[143]  R. Beran Minimum Hellinger distance estimates for parametric models , 1977 .

[144]  M Goldstein,et al.  A Two-Group Classification Procedure For Multivariate Dichotomous Responses. , 1977, Multivariate behavioral research.

[145]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[146]  William S. Meisel,et al.  An Algorithm for Constructing Optimal Binary Decision Trees , 1977, IEEE Transactions on Computers.

[147]  E. Slud Distribution Inequalities for the Binomial Law , 1977 .

[148]  Stephen S. Yau,et al.  Nonparametric Estimation of the Bayes Error of Feature Extractors Using Ordered Nearest Neighbor Sets , 1977, IEEE Transactions on Computers.

[149]  R. Fefferman Review: Miguel de Guzmán, Differentiation of integrals in $R^n$ , 1977 .

[150]  L. Breiman,et al.  Variable Kernel Estimates of Multivariate Densities , 1977 .

[151]  G. Rota Basic Concepts in Information Theory and Statistics, A.M. Mathai, P.N. Rathie. Wiley (1975), 137 pp , 1977 .

[152]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[153]  Zen Chen,et al.  Nonparametric Bayes Risk Estimation for Pattern Classification , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[154]  P. Deheuvels Estimation non paramétrique de la densité par histogrammes généralisés , 1977 .

[155]  R. Dudley Central Limit Theorems for Empirical Measures , 1978 .

[156]  Ned Glick,et al.  Additive estimators for probabilities of correct classification , 1978, Pattern Recognit..

[157]  J. E. Jackson Discrete discriminant analysis , 1978 .

[158]  Pierre A. Devijver A note on ties in voting with the k-NN rule , 1978, Pattern Recognit..

[159]  Anil K. Jain,et al.  NOTE ON DISTANCE-WEIGHTED k-NEAREST NEIGHBOR RULES. , 1978 .

[160]  R. Olshen,et al.  Asymptotically Efficient Solutions to the Classification Problem , 1978 .

[161]  Wlodzimierz Greblicki,et al.  Asymptotically optimal pattern recognition procedures with density estimates (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[162]  W. Rogers,et al.  A Finite Sample Distribution-Free Performance Bound for Local Discrimination Rules , 1978 .

[163]  H. Teicher,et al.  Probability theory: Independence, interchangeability, martingales , 1978 .

[164]  L. Gyorfi On the rate of convergence of nearest neighbor rules (Corresp.) , 1978 .

[165]  Franco P. Preparata,et al.  The Densest Hemisphere Problem , 1978, Theor. Comput. Sci..

[166]  R. Dudley Balls in Rk do not cut all subsets of k + 2 points , 1979 .

[167]  G. Krishna,et al.  The condensed nearest neighbor rule using the concept of mutual nearest neighborhood (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[168]  Pierre A. Devijver,et al.  New error bounds with the nearest neighbor rule (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[169]  Judea Pearl,et al.  Capacity and Error Estimates for Boolean Classifiers with Limited Complexity , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[170]  Luc Devroye,et al.  Distribution-free performance bounds for potential function rules , 1979, IEEE Trans. Inf. Theory.

[171]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[172]  P. Gaenssler,et al.  Empirical Processes: A Survey of Results for Independent and Identically Distributed Random Variables , 1979 .

[173]  Luc Devroye,et al.  Distribution-free inequalities for the deleted and holdout error estimates , 1979, IEEE Trans. Inf. Theory.

[174]  L. Devroye,et al.  Distribution-Free Consistency Results in Nonparametric Discrimination and Regression Function Estimation , 1980 .

[175]  E. M. Rounds A combined nonparametric approach to feature selection and binary decision tree design , 1980, Pattern Recognit..

[176]  Jack Sklansky,et al.  Locally Trained Piecewise Linear Classifiers , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[177]  King-Sun Fu,et al.  Automated classification of nucleated blood cells using a binary tree classifier , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[178]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[179]  R. Olshen,et al.  Consistent nonparametric regression from recursive partitioning schemes , 1980 .

[180]  L. Devroye,et al.  On the L1 convergence of kernel estimators of regression functions with applications in discrimination , 1980 .

[181]  J. V. Campenhout The arbitrary relation between probability of error and measurement subset , 1980 .

[182]  L. Devroye,et al.  Consistency of a recursive nearest neighbor regression function estimate , 1980 .

[183]  D. Matula,et al.  Properties of Gabriel Graphs Relevant to Geographic Variation Research and the Clustering of Points in the Plane , 2010 .

[184]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[185]  Geoffrey J. McLachlan,et al.  Error rate estimation on the basis of posterior probabilities , 1980, Pattern Recognit..

[186]  O. J. Dunn,et al.  Posterior probability estimators in classification simulations , 1980 .

[187]  C. Papadimitriou,et al.  A Worst-Case Analysis of Nearest Neighbor Searching by Projection , 1980, ICALP.

[188]  Sarunas Raudys,et al.  On Dimensionality, Sample Size, Classification Error, and Complexity of Classification Algorithm in Pattern Recognition , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[189]  L. Devroye On the Asymptotic Probability of Error in Nonparametric Discrimination , 1981 .

[190]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[191]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[192]  Richard M. Dudley,et al.  Some special vapnik-chervonenkis classes , 1981, Discret. Math..

[193]  G. Collomb Estimation Non-paramétrique de la Régression: Revue Bibliographique@@@Estimation Non-parametrique de la Regression: Revue Bibliographique , 1981 .

[194]  Josef Kittler,et al.  An efficient estimator of pattern recognition system error probability , 1981, Pattern Recognit..

[195]  Luc Devroye,et al.  On the Inequality of Cover and Hart in Nearest Neighbor Discrimination , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[196]  Wlodzimierz Greblicki Asymptotic efficiency of classifying procedures using the Hermite series estimate of multivariate probability densities , 1981, IEEE Trans. Inf. Theory.

[197]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[198]  Keinosuke Fukunaga,et al.  The optimal distance measure for nearest neighbor classification , 1981, IEEE Trans. Inf. Theory.

[199]  L. Devroye On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates , 1981 .

[200]  D. Pollard Strong Consistency of $K$-Means Clustering , 1981 .

[201]  P. Hall On nonparametric multivariate binary discrimination , 1981 .

[202]  I. Sethi A Fast Algorithm for Recognizing Nearest Neighbors , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[203]  V. Vapnik,et al.  Necessary and Sufficient Conditions for the Uniform Convergence of Means to their Expectations , 1982 .

[204]  S. Geman,et al.  Nonparametric Maximum Likelihood Estimation by the Method of Sieves , 1982 .

[205]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[206]  C. R. Rao,et al.  On the convexity of some divergence measures based on entropy functions , 1982, IEEE Trans. Inf. Theory.

[207]  I. K. Sethi,et al.  Hierarchical Classifier Design Using Mutual Information , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[208]  L. Devroye Bounds for the Uniform Deviation of Empirical Measures , 1982 .

[209]  Miroslaw Pawlak,et al.  A classification procedure using the multiple Fourier series , 1982, Inf. Sci..

[210]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[211]  A. Krzyżak,et al.  Almost Everywhere Convergence of Recursive Kernel Regression Function Estimates , 1982 .

[212]  S. Hora,et al.  Estimation of Error Rates in Several-Population Discriminant Analysis , 1982 .

[213]  Moshe Ben-Bassat,et al.  35 Use of distance measures, information measures and error bounds in feature evaluation , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[214]  Sarunas Raudys,et al.  Collective selection of the best version of a pattern recognition system , 1982, Pattern Recognit. Lett..

[215]  Roland T. Chin,et al.  An Automated Approach to the Design of Decision Tree Classifiers , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[216]  Pramod K. Varshney,et al.  Application of information theory to the construction of efficient decision trees , 1982, IEEE Trans. Inf. Theory.

[217]  David Pollard,et al.  Quantization and the method of k -means , 1982, IEEE Trans. Inf. Theory.

[218]  King-Sun Fu,et al.  A method for the design of binary tree classifiers , 1983, Pattern Recognit..

[219]  Miroslaw Pawlak,et al.  Almost sure convergence of classification procedures using Hermite series density estimates , 1983, Pattern Recognit. Lett..

[220]  L. Devroye The Equivalence of Weak, Strong and Complete Convergence in $L_1$ for Kernel Density Estimates , 1983 .

[221]  Adam Krzyzak,et al.  Classification procedures using multivariate variable kernel density estimate , 1983, Pattern Recognit. Lett..

[222]  J. Marron Optimal Rates of Convergence to Bayes Risk in Nonparametric Discrimination , 1983 .

[223]  Henry Fuchs,et al.  Near real-time shaded display of rigid objects , 1983, SIGGRAPH.

[224]  King-Sun Fu,et al.  Automatic classification of cervical cells using a binary tree classifier , 1983, Pattern Recognition.

[225]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[226]  Lucien Birgé Approximation dans les espaces métriques et théorie de l'estimation , 1983 .

[227]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[228]  P. Bickel,et al.  Sums of Functions of Nearest Neighbor Distances, Moment Bounds, Limit Theorems and a Goodness of Fit Test , 1983 .

[229]  J. Friedman,et al.  PROJECTION PURSUIT DENSITY ESTIMATION , 1984 .

[230]  László Györfi,et al.  Adaptive linear procedures under general conditions , 1984, IEEE Trans. Inf. Theory.

[231]  K. Alexander,et al.  Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm , 1984 .

[232]  Norman Matloff,et al.  The asymptotic distribution of an estimator of the Bayes error rate , 1984, Pattern Recognit. Lett..

[233]  Keinosuke Fukunaga,et al.  An Optimal Global Nearest Neighbor Metric , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[234]  Adam Krzyzak,et al.  Distribution-free consistency of a nonparametric kernel regression estimate and classification , 1984, IEEE Trans. Inf. Theory.

[235]  W. Stute Asymptotic Normality of Nearest Neighbor Regression Function Estimates , 1984 .

[236]  J. Burbea The convexity with respect to Gaussian distributions of divergences of order a , 1984 .

[237]  K. Fukunaga,et al.  Nonparametric Data Reduction , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[238]  Ching Y. Suen,et al.  Analysis and Design of a Decision Tree Based on Entropy Reduction and Its Application to Large Character Set Recognition , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[239]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[240]  Rainer Kemp,et al.  Fundamentals of the average case analysis of particular algorithms , 1985, Wiley-Teubner series in computer science.

[241]  P. Diaconis,et al.  On Nonlinear Functions of Linear Combinations , 1984 .

[242]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[243]  A. Krzyżak,et al.  Distribution-Free Pointwise Consistency of Kernel Regression Estimate , 1984 .

[244]  C. George Fubini’s Theorem , 1984 .

[245]  R. Olshen,et al.  Almost surely consistent nonparametric regression from recursive partitioning schemes , 1984 .

[246]  George Nagy,et al.  Decision tree design using a probabilistic model , 1984, IEEE Trans. Inf. Theory.

[247]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[248]  Gerhard E. Tutz,et al.  Smoothed additive estimators for non-error rates in multiple discriminant analysis , 1985, Pattern Recognit..

[249]  Luc Devroye,et al.  Data Structures in Kernel Density Estimation , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[250]  J. Yukich Laws of large numbers for classes of functions , 1985 .

[251]  W. Greblicki,et al.  Pointwise consistency of the hermite series density estimate , 1985 .

[252]  W. Härdle,et al.  Optimal Bandwidth Selection in Nonparametric Regression Function Estimation , 1985 .

[253]  A. F. Mitchell,et al.  The Mahalanobis distance and elliptic distributions , 1985 .

[254]  Y. Yatracos Rates of Convergence of Minimum Distance Estimators and Kolmogorov's Entropy , 1985 .

[255]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[256]  Xiaobo Li,et al.  Tree classifier design with a permutation statistic , 1986, Pattern Recognit..

[257]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[258]  D. J. Hand,et al.  Recent advances in error rate estimation , 1986, Pattern Recognit. Lett..

[259]  James D. Knoke,et al.  The robust estimation of classification error rates , 1986 .

[260]  L. Birge,et al.  On estimating a density using Hellinger distance and some other strange facts , 1986 .

[261]  W. Grassman Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory (Harold J. Kushner) , 1986 .

[262]  J. Steele An Efron-Stein inequality for nonsymmetric statistics , 1986 .

[263]  Adam Krzyzak,et al.  The rates of convergence of kernel regression estimates and classification rules , 1986, IEEE Trans. Inf. Theory.

[264]  E. Ruiz An algorithm for finding nearest neighbours in (approximately) constant average time , 1986 .

[265]  Song B. Park,et al.  A Fast k Nearest Neighbor Finding Algorithm Based on the Ordered Partition , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[266]  G. Tutz An alternative choice of smoothing for kernel-based density estimates in discrete discriminant analysis , 1986 .

[267]  Jan L. Talmon A multiclass nonparametric partitioning algorithm , 1986, Pattern Recognit. Lett..

[268]  M. Talagrand The Glivenko-Cantelli Problem , 1987 .

[269]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[270]  J. Spencer Ten lectures on the probabilistic method , 1987 .

[271]  P. K. Bhattacharya,et al.  Weak Convergence of $k$-NN Density and Regression Estimators with Varying $k$ and Applications , 1987 .

[272]  W. Krzanowski A comparison between two distance-based discriminant principles , 1987 .

[273]  D. J. Hand,et al.  A comparison of two average conditional error rate estimators , 1987, Pattern Recognit. Lett..

[274]  Otto Nurmi,et al.  Algorithms for computational geometry , 1987 .

[275]  L. Zhao Exponential bounds of mean error for the nearest neighbor estimates of regression functions*1 , 1987 .

[276]  George Loizou,et al.  The Nearest Neighbor and the Bayes Error Rates , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[277]  I. J. Taneja STATISTICAL ASPECTS OF DIVERGENCE MEASURES , 1987 .

[278]  L. Devroye A Course in Density Estimation , 1987 .

[279]  B. D. Ripley,et al.  Potential pattern recognition in chemical and medical decision making , 1987 .

[280]  L. Zhao,et al.  Almost sure L 1 -norm convergence for data-based histogram density estimates , 1987 .

[281]  Anil K. Jain,et al.  Bootstrap Techniques for Error Estimation , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[282]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[283]  Miroslaw Pawlak,et al.  Necessary and sufficient conditions for Bayes risk consistency of a recursive kernel classification rule , 1987, IEEE Trans. Inf. Theory.

[284]  Keinosuke Fukunaga,et al.  Bayes Error Estimation Using Parzen and k-NN Procedures , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[285]  D. Pollard,et al.  $U$-Processes: Rates of Convergence , 1987 .

[286]  R. Dudley Universal Donsker Classes and Metric Entropy , 1987 .

[287]  Michael R. Kaplan,et al.  The Use of Spatial Coherence in Ray Tracing , 1987 .

[288]  M. Wand,et al.  On nonparametric discrimination using density differences , 1988 .

[289]  Robert H. Baran Comments on "A new theoretical and algorithmical basis for estimation, identification and control" by P. Kovanic , 1988, Autom..

[290]  Heinrich Niemann,et al.  An efficient branch-and-bound nearest neighbour classifier , 1988, Pattern Recognition Letters.

[291]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[292]  I. J. Schoenberg On Pólya frequency functions. II: Variation-diminishing integral operators of the convolution type , 1988 .

[293]  W. Loh,et al.  Tree-Structured Classification via Generalized Discriminant Analysis. , 1988 .

[294]  James A. Anderson,et al.  Neurocomputing: Foundations of Research , 1988 .

[295]  Eric B. Baum,et al.  On the capabilities of multilayer perceptrons , 1988, J. Complex..

[296]  L. Devroye THE EXPECTED SIZE OF SOME GRAPHS IN COMPUTATIONAL GEOMETRY , 1988 .

[297]  Takao Nishizeki,et al.  Planar Graphs: Theory and Algorithms , 1988 .

[298]  Miroslaw Pawlak,et al.  On the asymptotic properties of smoothed estimators of the classification error rate , 1988, Pattern Recognit..

[299]  C. Koutsougeras,et al.  Training of a neural network for pattern classification based on an entropy measure , 1988, IEEE 1988 International Conference on Neural Networks.

[300]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[301]  Leslie G. Valiant,et al.  A general lower bound on the number of examples needed for learning , 1988, COLT '88.

[302]  Alon Itai,et al.  Learnability by fixed distributions , 1988, COLT '88.

[303]  David Haussler,et al.  Predicting {0,1}-functions on randomly drawn points , 1988, COLT '88.

[304]  Luc Devroye,et al.  Automatic Pattern Recognition: A Study of the Probability of Error , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[305]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[306]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[307]  David Haussler,et al.  What Size Net Gives Valid Generalization? , 1989, Neural Computation.

[308]  L. Zhao Exponential bounds of mean error for the kernel estimates of regression functions , 1989 .

[309]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[310]  J. Yukich,et al.  Some new Vapnik-Chervonenkis classes , 1989 .

[311]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[312]  A. Barron,et al.  Statistical properties of artificial neural networks , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[313]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[314]  Hanan Samet,et al.  Applications of spatial data structures , 1989 .

[315]  Edward J. Delp,et al.  An iterative growing and pruning algorithm for classification tree design , 1989, Conference Proceedings., IEEE International Conference on Systems, Man and Cybernetics.

[316]  L. Devroye,et al.  An equivalence theorem for L1 convergence of the kernel regression estimate , 1989 .

[317]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[318]  I. Vajda Theory of statistical inference and information , 1989 .

[319]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[320]  G. Tutz On cross-validation for discrete kernel estimates in discrimination , 1989 .

[321]  J. Friedman,et al.  FLEXIBLE PARSIMONIOUS SMOOTHING AND ADDITIVE MODELING , 1989 .

[322]  Torben Hagerup,et al.  A Guided Tour of Chernoff Bounds , 1990, Inf. Process. Lett..

[323]  P. Massart The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality , 1990 .

[324]  David J. Hand,et al.  The multi-class metric problem in nearest neighbour discrimination rules , 1990, Pattern Recognit..

[325]  Donald F. Specht,et al.  Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification , 1990, IEEE Trans. Neural Networks.

[326]  Halbert White,et al.  Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings , 1990, Neural Networks.

[327]  Tomaso A. Poggio,et al.  Extensions of a Theory of Networks for Approximation and Learning , 1990, NIPS.

[328]  M. Golea,et al.  A Growth Algorithm for Neural Network Decision Trees , 1990 .

[329]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[330]  R. Durrett Probability: Theory and Examples , 1993 .

[331]  Teuvo Kohonen,et al.  STATISTICAL PATTERN RECOGNITION REVISITED , 1990 .

[332]  L. Devroye,et al.  No Empirical Probability Measure can Converge in the Total Variation Sense for all Distributions , 1990 .

[333]  Jack Sklansky,et al.  Automated design of linear tree classifiers , 1990, Pattern Recognit..

[334]  Alan J. Broder Strategies for efficient incremental nearest neighbor search , 1990, Pattern Recognit..

[335]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[336]  Richard G. Priest,et al.  Pattern classification using projection pursuit , 1990, Pattern Recognit..

[337]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[338]  Adam Krzyzak,et al.  On exponential bounds on the Bayes risk of the kernel classification rule , 1991, IEEE Trans. Inf. Theory.

[339]  V. Tikhomirov On the Representation of Continuous Functions of Several Variables as Superpositions of Continuous Functions of one Variable and Addition , 1991 .

[340]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[341]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[342]  Hans Ulrich Simon The Vapnik-Chervonenkis Dimension of Decision Trees with Bounded Rank , 1991, Inf. Process. Lett..

[343]  Andrew R. Barron,et al.  Complexity Regularization with Application to Artificial Neural Networks , 1991 .

[344]  Sanjeev R. Kulkarni,et al.  Problems of computational and informational complexity in machine vision and learning , 1991 .

[345]  Philip A. Chou,et al.  Optimal Partitioning for Classification and Regression Trees , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[346]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[347]  Richard P. Brent,et al.  Fast training algorithms for multilayer neural nets , 1991, IEEE Trans. Neural Networks.

[348]  Robert P. W. Duin,et al.  Generalization capabilities of minimal kernel-based networks , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[349]  L. Devroye Exponential Inequalities in Nonparametric Estimation , 1991 .

[350]  Shlomo Geva,et al.  Adaptive nearest neighbor pattern classification , 1991, IEEE Trans. Neural Networks.

[351]  Andrew R. Barron,et al.  Minimum complexity density estimation , 1991, IEEE Trans. Inf. Theory.

[352]  Saul B. Gelfand,et al.  Classification trees with neural network feature extraction , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[353]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[354]  Yung-Chang Chen,et al.  A new fast algorithm for effective training of neural classifiers , 1992, Pattern Recognit..

[355]  Tianping Chen,et al.  A Constructive Proof and An Extension of Cybenko’s Approximation Theorem , 1992 .

[356]  Vera Kurková,et al.  Kolmogorov's theorem and multilayer neural networks , 1992, Neural Networks.

[357]  Olivier Gascuel,et al.  Distribution-free performance bounds with the resubstitution error estimate , 1992, Pattern Recognit. Lett..

[358]  G. Pflug,et al.  Stochastic approximation and optimization of random systems , 1992 .

[359]  A. Shiryayev On Sums of Independent Random Variables , 1992 .

[360]  Gábor Lugosi,et al.  Learning with an unreliable teacher , 1992, Pattern Recognit..

[361]  L. Holmström,et al.  Asymptotic bounds for the expected L 1 error of a multivariate kernel density estimator , 1992 .

[362]  H. White Nonparametric Estimation of Conditional Quantiles Using Neural Networks , 1990 .

[363]  V. D. Pietra,et al.  Minimum Impurity Partitions , 1992 .

[364]  László Györfi,et al.  Distribution estimation consistent in total variation and in two types of information divergence , 1992, IEEE Trans. Inf. Theory.

[365]  David Haussler,et al.  Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..

[366]  Eduardo D. Sontag,et al.  Rate of approximation results motivated by robust neural network learning , 1993, COLT '93.

[367]  Jan Mielniczuk,et al.  Consistency of multilayer perceptron regression estimators , 1993, Neural Networks.

[368]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[369]  Jooyoung Park,et al.  Approximation and Radial-Basis-Function Networks , 1993, Neural Computation.

[370]  G. Lugosi,et al.  Strong Universal Consistency of Neural Network Classifiers , 1993, Proceedings. IEEE International Symposium on Information Theory.

[371]  András Faragó,et al.  Fast Nearest-Neighbor Search in Dissimilarity Spaces , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[372]  John Shawe-Taylor,et al.  A Result of Vapnik with Applications , 1993, Discret. Appl. Math..

[373]  G. Lugosi,et al.  On the Posterior Probability estimate of the error rate of nonparametric classification rules , 1993, Proceedings. IEEE International Symposium on Information Theory.

[374]  Erkki Oja,et al.  Rival penalized competitive learning for clustering analysis, RBF net, and curve detection , 1993, IEEE Trans. Neural Networks.

[375]  Kurt Hornik,et al.  Some new results on neural network approximation , 1993, Neural Networks.

[376]  Paul W. Goldberg,et al.  Bounding the Vapnik-Chervonenkis Dimension of Concept Classes Parameterized by Real Numbers , 1993, COLT '93.

[377]  Hans Ulrich Simon,et al.  General bounds on the number of examples needed for learning probabilistic concepts , 1993, COLT '93.

[378]  Wolfgang Maass,et al.  Bounds for the computational power and learning complexity of analog neural nets , 1993, SIAM J. Comput..

[379]  Martin Anthony,et al.  On the power of polynomial discriminators and radial basis function networks , 1993, COLT '93.

[380]  Eduardo D. Sontag,et al.  Finiteness results for sigmoidal “neural” networks , 1993, STOC.

[381]  Brian D. Ripley,et al.  Statistical aspects of neural networks , 1993 .

[382]  Peter L. Bartlett,et al.  Lower bounds on the Vapnik-Chervonenkis dimension of multi-layer threshold networks , 1993, COLT '93.

[383]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[384]  Sanjeev R. Kulkarni,et al.  A metric entropy bound is not sufficient for learnability , 1994, IEEE Trans. Inf. Theory.

[385]  Tamás Linder,et al.  Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding , 1994, IEEE Trans. Inf. Theory.

[386]  Demetri Psaltis,et al.  On the finite sample performance of the nearest neighbor classifier , 1993, IEEE Trans. Inf. Theory.

[387]  G. Lugosi,et al.  On the Strong Universal Consistency of Nearest Neighbor Regression Function Estimates , 1994 .

[388]  Wolfgang Maass,et al.  Neural Nets with Superlinear VC-Dimension , 1994, Neural Computation.

[389]  Alon Itai,et al.  Nonuniform Learnability , 1988, J. Comput. Syst. Sci..

[390]  M. Talagrand Sharper Bounds for Gaussian and Empirical Processes , 1994 .

[391]  Pramod K. Varshney,et al.  A Tight Upper Bound on the Bayesian Probability of Error , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[392]  Gábor Lugosi,et al.  Nonparametric estimation via empirical risk minimization , 1995, IEEE Trans. Inf. Theory.

[393]  W. Loh,et al.  Generalized regression trees , 1995 .

[394]  Luc Devroye,et al.  Lower bounds in pattern recognition and learning , 1995, Pattern Recognit..

[395]  W. Wong,et al.  Probability inequalities for likelihood ratios and convergence rates of sieve MLEs , 1995 .

[396]  David Haussler,et al.  Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.

[397]  John Shawe-Taylor Sample sizes for sigmoidal neural networks , 1995, COLT '95.

[398]  G. Lugosi Improved upper bounds for probabilities of uniform deviations , 1995 .

[399]  P. R. Kumar,et al.  Learning by Canonical Smooth Es timation-Part I: Simultaneous Estimation , 1996 .

[400]  Gábor Lugosi,et al.  Concept learning using complexity regularization , 1995, IEEE Trans. Inf. Theory.

[401]  Adam Krzyzak,et al.  Nonparametric estimation and classification using radial basis function nets and empirical risk minimization , 1996, IEEE Trans. Neural Networks.

[402]  G. Lugosi,et al.  Consistency of Data-driven Histogram Methods for Density Estimation and Classification , 1996 .

[403]  A. Nobel Histogram regression estimation using data-dependent partitions , 1996 .

[404]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[405]  G. Gates The Reduced Nearest Neighbor Rule , 1998 .