Minimization of ordered, symmetric half-products

We introduce a class of pseudo-Boolean functions called ordered, symmetric half-products. The class includes a number of well known scheduling problems. We study sets of dominating solutions for minimization of the half-products, and we show their fully polynomial time approximation schemes that use a natural rounding scheme to obtain @e-solutions in O(n^2/@e) time.

[1]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[2]  Pierre Hansen,et al.  Constrained Nonlinear 0-1 Programming , 1989 .

[3]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[4]  G HallNicholas,et al.  Earliness-tardiness scheduling problems , 1991 .

[5]  David J. Rader,et al.  Maximizing the Product of Two Linear Functions In 0-1 Variables , 2002 .

[6]  Wieslaw Kubiak,et al.  A half-product based approximation scheme for agreeably weighted completion time variance , 2005, Eur. J. Oper. Res..

[7]  Pierre Hansen,et al.  State-of-the-Art Survey - Constrained Nonlinear 0-1 Programming , 1993, INFORMS J. Comput..

[8]  N. S. Barnett,et al.  Private communication , 1969 .

[9]  Wieslaw Kubiak,et al.  A Fully Polynomial Approximation Scheme for the Weighted Earliness-Tardiness Problem , 1999, Oper. Res..

[10]  Daniel J. Amit,et al.  Modeling brain function: the world of attractor neural networks, 1st Edition , 1989 .

[11]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[12]  Edward G. Coffman,et al.  Scheduling independent tasks to reduce mean finishing time , 1974, CACM.

[13]  Wieslaw Kubiak,et al.  Positive half-products and scheduling with controllable processing times , 2005, Eur. J. Oper. Res..

[14]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[15]  Wieslaw Kubiak,et al.  Completion time variance minimization on a single machine is difficult , 1993, Oper. Res. Lett..

[16]  Eugene L. Lawler,et al.  Parameterized Approximation Scheme for the Multiple Knapsack Problem , 2009, SIAM J. Comput..

[17]  Gerhard J. Woeginger,et al.  When does a dynamic programming formulation guarantee the existence of an FPTAS? , 1999, SODA '99.

[18]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[19]  Endre Boros,et al.  The max-cut problem and quadratic 0–1 optimization; polyhedral aspects, relaxations and bounds , 1991, Ann. Oper. Res..

[20]  Wieslaw Kubiak,et al.  Fast fully polynomial approximation schemes for minimizing completion time variance , 2002, Eur. J. Oper. Res..

[21]  Wieslaw Kubiak,et al.  Algorithms for Minclique Scheduling Problems , 1997, Discret. Appl. Math..

[22]  Marc E. Posner,et al.  Earliness-Tardiness Scheduling Problems, I: Weighted Deviation of Completion Times About a Common Due Date , 1991, Oper. Res..

[23]  D. Mattis Solvable spin systems with random interactions , 1976 .

[24]  Xiaoqiang Cai,et al.  Minimization of agreeably weighted variance in single machine systems , 1995 .

[25]  Shimon Even,et al.  Bounds for the Optimal Scheduling of n Jobs on m Processors , 1964 .

[26]  Wieslaw Kubiak,et al.  New Results on the Completion Time Variance Minimization , 1995, Discret. Appl. Math..

[27]  Gerhard J. Woeginger An Approximation Scheme for Minimizing Agreeably Weighted Variance on a Single Machine , 1999, INFORMS J. Comput..

[28]  Gerhard J. Woeginger,et al.  When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)? , 2000, INFORMS J. Comput..

[29]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[30]  Endre Boros,et al.  Minimization of Half-Products , 1998, Math. Oper. Res..

[31]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .