Predictions of nonequilibrium radiation: analysis and comparison with EAST experiments

We simulate the relaxation processes behind a strong shock by means of an electronically specific collisional radiative model for atomic species. Test conditions are taken from the experimental campaign carried out in the EAST facility in the framework of the NASA Crew Exploration Vehicle Aeroscience Project. The present work is committed to the partial validation of the collisional-radiative model against the recent experimental data. A direct comparison among experimental and simulated radiative intensity profiles shows a reasonable agreement even for the low pressure cases where the flow is in strong nonequilibrium condition. In the rapidly ionizing regime behind strong shock waves, the electronic energy level populations depart from Boltzmann distributions since the high lying bound electronic states are depleted. A detailed analysis of the elementary kinetic processes occurring in the relaxation zone revealed that improvement of the agreement among simulation and experiments can be obtained using the recent rate constant compiled by Frost et al..

[1]  B. Potapkin,et al.  Physical and Chemical Processes in Gas Dynamics: Physical and Chemical Kinetics and Thermodynamics of Gases and Plasmas, Volume II , 2004 .

[2]  R. Jaffe,et al.  Dissociation Cross Sections and Rate Coefficients for Nitrogen from Accurate Theoretical Calculations , 2008 .

[3]  W. Henline,et al.  Comparison of Coupled Radiative Navier-Stokes Flow Solutions with the Project Fire II Flight Data , 1994 .

[4]  Anne Bourdon,et al.  Nonequilibrium radiative heat flux modeling for the Huygens entry probe , 2006 .

[5]  C. Johnston A Comparison of EAST Shock-Tube Radiation Measurements with a New Air Radiation Model , 2008 .

[6]  Philippe Rivière,et al.  Radiative transfer in LTE air plasmas for temperatures up to , 2003 .

[7]  Deepak Bose,et al.  Modeling and experimental assessment of CN radiation behind a strong shock wave , 2006 .

[8]  A. Soufiani,et al.  Contributions of diatomic molecular electronic systems to heated air radiation , 2002 .

[9]  Chul Park,et al.  Operating Characteristics of a 60- and 10-cm Electric Arc-Driven Shock Tube-Part 11: The Driven Section , 1990 .

[10]  Mario Capitelli,et al.  N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations , 2006 .

[11]  L. Hartung,et al.  Nonequilibrium Radiative Heating Prediction Method for Aeroassist Flowfields with Coupling to Flowfield Solvers , 1991 .

[12]  W. Huo Electron-Impact Excitation and Ionization in Air , 2008 .

[13]  W. C. Martin,et al.  NIST Atomic Spectra Database (version 2.0) (1999) | NIST , 1999 .

[14]  Philippe Rivière,et al.  Spectroscopic data for the prediction of radiative transfer in CO2–N2 plasmas , 2009 .

[15]  Olivier Chazot,et al.  Simulations of nonequilibrium reentry air plasmas by means of a collisional-radiative model , 2007 .

[16]  L. Rosenmann,et al.  Approximate intensities of CO2 hot bands at 2.7, 4.3, and 12μm for high temperature and medium resolution applications , 1994 .

[17]  Alan C. Hindmarsh,et al.  Description and use of LSODE, the Livermore Solver for Ordinary Differential Equations , 1993 .

[18]  C. Park,et al.  Nonequilibrium Hypersonic Aerothermodynamics , 1989 .

[19]  H. Drawin Zur formelmäßigen Darstellung des Ionisierungsquerschnitts für den Atom-Atomstoß und über die Ionen-Elektronen-Rekombination im dichten Neutralgas , 1968 .

[20]  M. Mitchner,et al.  Partially ionized gases , 1973 .

[21]  Chul Park,et al.  Operating characteristics of a 60- and 10-cm electric arc-driven shock tube. I - The driver. II - The driven section , 1990 .

[22]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[23]  David W. Schwenke,et al.  Vibrational and Rotational Excitation and Relaxation of Nitrogen from Accurate Theoretical Calculations , 2008 .

[24]  M. Capitelli,et al.  Dissociation–recombination models in hypersonic boundary layer flows , 2007 .

[25]  Olivier Chazot,et al.  Analysis of the FIRE II Flight Experiment by Means of a Collisional Radiative Model , 2008 .

[26]  Graham V. Candler,et al.  Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium , 1991 .

[27]  Chul Park,et al.  Operating Characteristics of a 60- and 10-cm Electric Arc-Driven Shock Tube—Part I: The Driver , 1990 .

[28]  M. Seaton The Opacity Project , 1995 .

[29]  Christopher O. Johnston,et al.  Nonequilibrium Shock-Layer Radiative Heating for Earth and Titan Entry , 2006 .

[30]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[31]  P. Riviere Systematic semi-classical calculations of Stark broadening parameters of NI, OI, NII, OII multiplets for modelling the radiative transfer in atmospheric air mixture plasmas , 2002 .

[32]  Anne Bourdon,et al.  Collisional-radiative model in air for earth re-entry problems , 2006 .

[33]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[34]  Anne Bourdon,et al.  Experiment-Modeling Comparison in a Nonequilibrium Supersonic Air Nozzle Flow , 1999 .

[35]  T. Roberts,et al.  Implementation into TINA modelling for electron/electronic energy equation , 1996 .

[36]  Yuri Ralchenko,et al.  NIST Atomic Spectra Database , 2000 .

[37]  N. Badnell,et al.  Calculated cross sections and measured rate coefficients for electron-impact excitation of neutral and singly ionized nitrogen , 1998 .

[38]  D. Giordano,et al.  State to State Electron and Vibrational Kinetics in Supersonic Nozzle Air Expansion: An Improved Model , 2002 .

[39]  Radiative transfer in gases under thermal and chemical nonequilibrium conditions: Application to earth atmospheric re-entry , 2008 .

[40]  Charles H. Kruger,et al.  VffiRATIONALLY-SPECIFIC COLLISIONAL-RADIATIVE MODEL FOR NONEQUILIBRIUM NITROGEN PLASMAS , 1998 .

[41]  A. Soufiani,et al.  High-Temperature and Nonequilibrium Partition Function and Thermodynamic Data of Diatomic Molecules , 2009 .

[42]  Karen J. Olsen,et al.  NIST Atomic Spectra Database (version 2.0) , 1999 .

[43]  M. Gryziński,et al.  CLASSICAL THEORY OF ELECTRONIC AND IONIC INELASTIC COLLISIONS. Report No. 59/I-A , 1959 .

[44]  D. Bose,et al.  Analysis and Model Validation of Shock Layer Radiation in Air , 2008 .

[45]  Peter A. Gnoffo,et al.  Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium , 1989 .