Inactivation of Presynaptic Calcium Current Contributes to Synaptic Depression at a Fast Central Synapse

Voltage-gated calcium channels are well characterized at neuronal somata but less thoroughly understood at the presynaptic terminal where they trigger transmitter release. In order to elucidate how the intrinsic properties of presynaptic calcium channels influence synaptic function, we have made direct recordings of the presynaptic calcium current (I(pCa)) in a brainstem giant synapse called the calyx of Held. The current was pharmacologically classified as P-type and exhibited marked inactivation. The inactivation was largely dependent upon the inward calcium current magnitude rather than the membrane potential, displayed little selectivity between divalent charge carriers (Ca2+, Ba2+ and Sr+), and exhibited slow recovery. Simultaneous pre- and postsynaptic whole-cell recording revealed that I(pCa) inactivation predominantly contributes to posttetanic depression of EPSCs. Thus, because of its slow recovery, I(pCa) inactivation underlies this short-term synaptic plasticity.

[1]  F. Dodge,et al.  Co‐operative action of calcium ions in transmitter release at the neuromuscular junction , 1967, The Journal of physiology.

[2]  G. Weisz,et al.  Calcium channels involved in synaptic transmission at the mature and regenerating mouse neuromuscular junction. , 1996, The Journal of physiology.

[3]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[4]  R. Tsien,et al.  Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. , 1994, Science.

[5]  G. Laurent,et al.  Pharmacological characterization of presynaptic calcium currents underlying glutamatergic transmission in the avian auditory brainstem , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  C. Stevens,et al.  Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[7]  C. Stevens,et al.  Heterogeneity of Release Probability, Facilitation, and Depletion at Central Synapses , 1997, Neuron.

[8]  S. Iwasaki,et al.  Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem , 1998, The Journal of physiology.

[9]  D. Oertel,et al.  Encoding of Timing in the Brain Stem Auditory Nuclei of Vertebrates , 1997, Neuron.

[10]  I. Forsythe,et al.  The binaural auditory pathway: excitatory amino acid receptors mediate dual timecourse excitatory postsynaptic currents in the rat medial nucleus of the trapezoid body , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  I. Forsythe,et al.  Pre‐ and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. , 1995, The Journal of physiology.

[12]  R. Llinás,et al.  Presynaptic calcium currents in squid giant synapse. , 1981, Biophysical journal.

[13]  D. H. Cox,et al.  Inactivation of N-type calcium current in chick sensory neurons: calcium and voltage dependence , 1994, The Journal of general physiology.

[14]  M. Tachibana,et al.  Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  C E Carr,et al.  Processing of temporal information in the brain. , 1993, Annual review of neuroscience.

[16]  B. Sakmann,et al.  Pre‐ and postsynaptic whole‐cell recordings in the medial nucleus of the trapezoid body of the rat. , 1995, The Journal of physiology.

[17]  S. Thesleff Transmitter release at the neuromuscular junction. , 1988, Puerto Rico health sciences journal.

[18]  Laurence O Trussell,et al.  Cellular mechanisms for preservation of timing in central auditory pathways , 1997, Current Opinion in Neurobiology.

[19]  F. Ashcroft,et al.  Calcium dependence of the inactivation of calcium currents in skeletal muscle fibers of an insect. , 1981, Science.

[20]  Wade G. Regehr,et al.  Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses , 1994, Neuron.

[21]  B. Katz,et al.  The effect of prolonged depolarization on synaptic transfer in the stellate ganglion of the squid , 1971, The Journal of physiology.

[22]  E. Stefani,et al.  Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C terminus that does not include the Ca2+ -binding function of a motif with similarity to Ca2+ -binding domains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Luebke,et al.  Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus , 1993, Neuron.

[24]  I. Forsythe,et al.  Presynaptic Calcium Current Modulation by a Metabotropic Glutamate Receptor , 1996, Science.

[25]  A Konnerth,et al.  Proton‐induced transformation of calcium channel in chick dorsal root ganglion cells. , 1987, The Journal of physiology.

[26]  B. L. Ginsborg THE PHYSIOLOGY OF SYNAPSES , 1964 .

[27]  Michael E. Adams,et al.  P-type calcium channels in rat central and peripheral neurons , 1992, Neuron.

[28]  J. Kelly,et al.  Response of neurons in the lateral superior olive and medial nucleus of the trapezoid body to repetitive stimulation: Intracellular and extracellular recordings from mouse brain slice , 1993, Hearing Research.

[29]  K. Campbell,et al.  Subunit regulation of the neuronal alpha 1A Ca2+ channel expressed in Xenopus oocytes. , 1995, The Journal of physiology.

[30]  S. W. Jones,et al.  Calcium currents in bullfrog sympathetic neurons. II. Inactivation , 1989, The Journal of general physiology.

[31]  George J. Augustine,et al.  Adaptation of Ca2+-Triggered Exocytosis in Presynaptic Terminals , 1996, Neuron.

[32]  G. Matthews,et al.  Calcium-dependent inactivation of calcium current in synaptic terminals of retinal bipolar neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  P. Saggau,et al.  GABAB receptor‐mediated presynaptic inhibition in guinea‐pig hippocampus is caused by reduction of presynaptic Ca2+ influx. , 1995, The Journal of physiology.

[34]  E. M. Adler,et al.  Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses , 1990, Neuron.

[35]  A. Momiyama,et al.  Different types of calcium channels mediate central synaptic transmission , 1993, Nature.

[36]  K Kusano,et al.  Depression and recovery of transmission at the squid giant synapse. , 1975, The Journal of physiology.

[37]  B. W. E. Alford Depression and Recovery , 1972 .

[38]  B. Katz The release of neural transmitter substances , 1969 .

[39]  Eduardo Ríos,et al.  Ion-dependent Inactivation of Barium Current through L-type Calcium Channels , 1997, The Journal of general physiology.

[40]  Jose R. Lemos,et al.  Two types of calcium channels coexist in peptide-releasing vertebrate nerve terminals , 1989, Neuron.

[41]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[42]  Rodolfo Llinás,et al.  P-type calcium channels in the somata and dendrites of adult cerebellar purkinje cells , 1992, Neuron.

[43]  F. Hofmann,et al.  Regional Expression and Cellular Localization of the α1 and β Subunit of High Voltage-Activated Calcium Channels in Rat Brain , 1997, The Journal of Neuroscience.

[44]  I. Raman,et al.  AMPA receptors with high Ca2+ permeability mediate synaptic transmission in the avian auditory pathway. , 1995, The Journal of physiology.

[45]  R Llinás,et al.  Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[46]  H. Yawo,et al.  Re‐evaluation of calcium currents in pre‐ and postsynaptic neurones of the chick ciliary ganglion. , 1993, The Journal of physiology.

[47]  L. Fabre,et al.  The neurohypophysis. , 1968, Annual review of physiology.

[48]  L. Trussell,et al.  Desensitization of AMPA receptors upon multiquantal neurotransmitter release , 1993, Neuron.

[49]  Catherine E. Carr,et al.  Processing of Temporal Information in the Brain , 1993 .

[50]  I. Forsythe,et al.  Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. , 1994, The Journal of physiology.

[51]  R. Eckert,et al.  Inactivation of Ca channels. , 1984, Progress in biophysics and molecular biology.

[52]  R. Tsien,et al.  Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  E. Stanley,et al.  Characterization of a calcium current in a vertebrate cholinergic presynaptic nerve terminal , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  B. Sakmann,et al.  Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. , 1992, The Journal of physiology.

[55]  J. Simpson THE RELEASE OF NEURAL TRANSMITTER SUBSTANCES , 1969 .

[56]  M. Banks,et al.  Ca2+- and Voltage-Dependent Inactivation of Ca2+ Channels in Nerve Terminals of the Neurohypophysis , 1997, The Journal of Neuroscience.

[57]  W. Almers,et al.  Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. , 1981, The Journal of physiology.

[58]  Lori L. Isom,et al.  Auxiliary subunits of voltage-gated ion channels , 1994, Neuron.

[59]  E. Stefani,et al.  The amino terminus of a calcium channel β subunitsets rates of channel inactivation independently of the subunit's effect on activation , 1994, Neuron.

[60]  D. Oertel,et al.  Use of brain slices in the study of the auditory system: spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse. , 1985, The Journal of the Acoustical Society of America.

[61]  B. Sakmann,et al.  Calcium influx and transmitter release in a fast CNS synapse , 1996, Nature.

[62]  T. Otis,et al.  Direct Measurement of AMPA Receptor Desensitization Induced by Glutamatergic Synaptic Transmission , 1996, The Journal of Neuroscience.