Complex of Radiophysical, Geomagnetic, and Meteorological Observations (IZMIRAN), Kaliningrad Branch

[1]  Yury V. Yasyukevich,et al.  SIMuRG: System for Ionosphere Monitoring and Research from GNSS , 2020, GPS Solutions.

[2]  Yulia S. Tumanova,et al.  Efficiency of updating the ionospheric models using total electron content at mid- and sub-auroral latitudes , 2019, GPS Solutions.

[3]  I. Karpov,et al.  Local and Regional Ionospheric Disturbances During Meteorological Disturbances , 2019, Geomagnetism and Aeronomy.

[4]  G. Yakimova,et al.  Spatial and Temporal Variations of the Ionosphere during Meteorological Disturbances in December 2010 , 2019, Russian Journal of Physical Chemistry B.

[5]  A. Mylnikova,et al.  Correction of IRI-Plas and NeQuick Empirical Ionospheric Models at High Latitudes Using Data from the Remote Receivers of Global Navigation Satellite System Signals , 2018, Russian Journal of Physical Chemistry B.

[6]  M. Klimenko,et al.  Dependence of the Daily NmF2 Values over Mid-Latitude Stations on the Solar and Geomagnetic Activity , 2017, Russian Journal of Physical Chemistry B.

[7]  V. Klimenko,et al.  Principles of Processing and Selection of Radio Occultation Observation Data for Investigating the Ionospheric F2-Layer , 2017, Russian Journal of Physical Chemistry B.

[8]  S. P. Kshevetskii,et al.  Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth's surface and influence of this heating on the wave propagation conditions , 2017 .

[9]  I. Karpov,et al.  Ionospheric irregularities in periods of meteorological disturbances , 2017, Geomagnetism and Aeronomy.

[10]  N. Pedatella Impact of the lower atmosphere on the ionosphere response to a geomagnetic superstorm , 2016 .

[11]  M. Klimenko,et al.  Model study of the response of the thermosphere to perturbations of mesospheric tides and planetary waves during a sudden stratospheric warming , 2016, Russian Journal of Physical Chemistry B.

[12]  I. V. Karpov,et al.  Disturbances of the upper atmosphere and ionosphere caused by acoustic-gravity wave sources in the lower atmosphere , 2016, Russian Journal of Physical Chemistry B.

[13]  I. Shagimuratov,et al.  Use of GLONASS for studying the ionosphere , 2015, Russian Journal of Physical Chemistry B.

[14]  M. Klimenko,et al.  Investigating range error compensation in UHF radar through IRI-2007 real-time updating: Preliminary results , 2015 .

[15]  K. Ratovsky,et al.  Diurnal, seasonal and solar activity pattern of ionospheric variability from Irkutsk Digisonde data , 2015 .

[16]  Alexander S. Medvedev,et al.  Internal wave coupling processes in Earth's atmosphere , 2014, 1412.0077.

[17]  I. Shagimuratov,et al.  Use of total electron content maps for analysis of spatial-temporal structures of the ionosphere , 2014, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[18]  Fuqing Zhang,et al.  Internal gravity waves from atmospheric jets and fronts , 2014 .

[19]  Michael Pezzopane,et al.  Application of Autoscala to ionograms recorded by the AIS-Parus ionosonde , 2010, Comput. Geosci..

[20]  Mihail Codrescu,et al.  Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity , 2005 .

[21]  Henry Rishbeth,et al.  Patterns of F2-layer variability , 2001 .

[22]  Scott Edward Palo,et al.  Variability of the ionosphere , 2000 .

[23]  N. Mitchell,et al.  Gravity waves in the stratosphere and troposphere observed by lidar and MST radar , 1994 .

[24]  I. Karpov,et al.  Observations of the total electron content variations in the solar terminator region of the ionosphere , 2018 .

[25]  S. V. Voeykov,et al.  Generation of secondary waves due to intensive large-scale AGW traveling , 2008 .

[26]  T. Gulyaeva,et al.  Advanced specification of electron density and temperature in the IRI ionosphere–plasmasphere model , 2006 .