Touch probe radius compensation for coordinate measurement using kriging interpolation

Abstract Obtaining CAD (computer aided design) descriptions of actual parts having complex surfaces is a key part of the process of reverse engineering. This paper is concerned with the estimation of actual surfaces using coordinate measuring machines fitted with a spherically tipped touch probe. In particular, it addresses in detail the problem of probe radius compensation. A general mathematical model, using kriging, is proposed which first generates the initial probe centre surface and then estimates the compensated or part surface. The compensation is achieved using normal vectors to the initial probe centre surface at each measured point to compensate for the probe radius. The method is validated experimentally on known and free-form surfaces.