On structure, family and parameter estimation of hierarchical Archimedean copulas
暂无分享,去创建一个
[1] Alexander J. McNeil,et al. Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.
[2] Jan-Frederik Mai,et al. Constructing hierarchical Archimedean copulas with Lévy subordinators , 2010, J. Multivar. Anal..
[3] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[4] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[5] Bill Ravens,et al. An Introduction to Copulas , 2000, Technometrics.
[6] Johan Segers,et al. Nonparametric estimation of the tree structure of a nested Archimedean copula , 2013, Comput. Stat. Data Anal..
[7] P. Embrechts,et al. Bernoulli and tail-dependence compatibility , 2016, 1606.08212.
[8] Ostap Okhrin,et al. Hierarchical Archimedean Copulae: The HAC Package , 2012 .
[9] Yarema Okhrin,et al. On the structure and estimation of hierarchical Archimedean copulas , 2013 .
[10] Martin Holena,et al. Structure Determination and Estimation of Hierarchical Archimedean Copulas Based on Kendall Correlation Matrix , 2013, NFMCP.
[11] A. Martin-Löf. On the composition of elementary errors , 1994 .
[12] Marius Hofert,et al. Sampling Archimedean copulas , 2008, Comput. Stat. Data Anal..
[13] Satishs Iyengar,et al. Multivariate Models and Dependence Concepts , 1998 .
[14] Martin Holena,et al. Using Copulas in Data Mining Based on the Observational Calculus , 2015, IEEE Transactions on Knowledge and Data Engineering.
[15] Marius Hofert,et al. A stochastic representation and sampling algorithm for nested Archimedean copulas , 2012 .
[16] Nathan Uyttendaele. On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison , 2018, Comput. Stat..
[17] A. McNeil. Sampling nested Archimedean copulas , 2008 .
[18] A. McNeil,et al. Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications , 2012 .
[19] M. Rezapour. On the construction of nested Archimedean copulas for d-monotone generators , 2015 .
[20] Jun Yan,et al. Modeling Multivariate Distributions with Continuous Margins Using the copula R Package , 2010 .
[21] Bertrand Clarke,et al. Principles and Theory for Data Mining and Machine Learning , 2009 .
[22] M. Hofert,et al. CDO pricing with nested Archimedean copulas , 2011 .
[23] H. Cramér. On the composition of elementary errors , .
[24] M. Hofert,et al. Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas , 2017 .
[25] Marius Hofert,et al. Efficiently sampling nested Archimedean copulas , 2011, Comput. Stat. Data Anal..
[26] Jeffrey Sheen,et al. Conditional Systemic Risk with Penalized Copula , 2015 .
[27] B. Rémillard,et al. Goodness-of-fit tests for copulas: A review and a power study , 2006 .
[28] M. Hofert. Sampling Nested Archimedean Copulas: with Applications to CDO Pricing , 2010 .
[29] Martin Holena,et al. An approach to structure determination and estimation of hierarchical Archimedean Copulas and its application to Bayesian classification , 2016, Journal of Intelligent Information Systems.
[30] E. C. Titchmarsh,et al. The Laplace Transform , 1991, Heat Transfer 1.
[31] C. Genest,et al. Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .
[32] Vladimir Batagelj,et al. Note on ultrametric hierarchical clustering algorithms , 1981 .