Computing mountain passes and transition states
暂无分享,去创建一个
[1] P. Rabinowitz,et al. Dual variational methods in critical point theory and applications , 1973 .
[2] Roger Fletcher,et al. A new efficient method for locating saddle points , 1981 .
[3] J. Aubin,et al. Applied Nonlinear Analysis , 1984 .
[4] J. Mawhin,et al. Critical Point Theory and Hamiltonian Systems , 1989 .
[5] M. Willem,et al. A note on Palais-Smale condition and coercivity , 1990, Differential and Integral Equations.
[6] I. Ekeland. Convexity Methods In Hamiltonian Mechanics , 1990 .
[7] Y. Choi,et al. A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .
[8] Brian W. Kernighan,et al. AMPL: A Modeling Language for Mathematical Programming , 1993 .
[9] M. Willem. Minimax Theorems , 1997 .
[10] Craig T. Lawrence,et al. A Computationally Efficient Feasible Sequential Quadratic Programming Algorithm , 2000, SIAM J. Optim..
[11] Jorge Nocedal,et al. An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..
[12] Goong Chen,et al. A high-linking algorithm for sign-changing solutions of semilinear elliptic equations , 1999 .
[13] R. Vanderbei. LOQO user's manual — version 3.10 , 1999 .
[14] Jianxin Zhou,et al. Algorithms and Visualization for solutions of nonlinear Elliptic equations , 2000, Int. J. Bifurc. Chaos.
[15] Yongxin Li,et al. A Minimax Method for Finding Multiple Critical Points and Its Applications to Semilinear PDEs , 2001, SIAM J. Sci. Comput..
[16] G. Henkelman,et al. Methods for Finding Saddle Points and Minimum Energy Paths , 2002 .
[17] Yongxin Li,et al. Convergence Results of a Local Minimax Method for Finding Multiple Critical Points , 2002, SIAM J. Sci. Comput..