Computing mountain passes and transition states

Abstract.The mountain-pass theorem guarantees the existence of a critical point on a path that connects two points separated by a sufficiently high barrier. We propose the elastic string algorithm for computing mountain passes in finite-dimensional problems and analyze the convergence properties and numerical performance of this algorithm for benchmark problems in chemistry and discretizations of infinite-dimensional variational problems. We show that any limit point of the elastic string algorithm is a path that crosses a critical point at which the Hessian matrix is not positive definite.

[1]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[2]  Roger Fletcher,et al.  A new efficient method for locating saddle points , 1981 .

[3]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[4]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[5]  M. Willem,et al.  A note on Palais-Smale condition and coercivity , 1990, Differential and Integral Equations.

[6]  I. Ekeland Convexity Methods In Hamiltonian Mechanics , 1990 .

[7]  Y. Choi,et al.  A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .

[8]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[9]  M. Willem Minimax Theorems , 1997 .

[10]  Craig T. Lawrence,et al.  A Computationally Efficient Feasible Sequential Quadratic Programming Algorithm , 2000, SIAM J. Optim..

[11]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[12]  Goong Chen,et al.  A high-linking algorithm for sign-changing solutions of semilinear elliptic equations , 1999 .

[13]  R. Vanderbei LOQO user's manual — version 3.10 , 1999 .

[14]  Jianxin Zhou,et al.  Algorithms and Visualization for solutions of nonlinear Elliptic equations , 2000, Int. J. Bifurc. Chaos.

[15]  Yongxin Li,et al.  A Minimax Method for Finding Multiple Critical Points and Its Applications to Semilinear PDEs , 2001, SIAM J. Sci. Comput..

[16]  G. Henkelman,et al.  Methods for Finding Saddle Points and Minimum Energy Paths , 2002 .

[17]  Yongxin Li,et al.  Convergence Results of a Local Minimax Method for Finding Multiple Critical Points , 2002, SIAM J. Sci. Comput..