Characterization of immobilized artificial membrane (IAM) and XTerra columns by means of chromatographic models.

[1]  Bernard Testa,et al.  Immobilized artificial membrane HPLC in drug research. , 2003, Journal of medicinal chemistry.

[2]  P. Carrupt,et al.  Molecular Factors Influencing Retention on Immobilized Artificial Membranes (IAM) Compared to Partitioning in Liposomes and n-Octanol , 2002, Pharmaceutical Research.

[3]  C. Poole,et al.  Systematic search for surrogate chromatographic models of biopartitioning processes. , 2002, The Analyst.

[4]  J. R. Torres-Lapasió,et al.  Prediction of the retention in reversed-phase liquid chromatography using solute-mobile phase-stationary phase polarity parameters. , 2002, Journal of chromatography. A.

[5]  C. Poole,et al.  Retention characteristics of an immobilized artificial membrane column in reversed-phase liquid chromatography. , 2002, Journal of chromatography. A.

[6]  E. Bosch,et al.  Retention of ionizable compounds on high-performance liquid chromatography XI. Global linear solvation energy relationships for neutral and ionizable compounds. , 2002, Journal of chromatography. A.

[7]  M. Abraham,et al.  Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures. , 2000, Journal of pharmaceutical sciences.

[8]  P. Carr,et al.  Global linear solvation energy relationships for retention prediction in reversed-phase liquid chromatography , 1999 .

[9]  T. H. Walter,et al.  Systematic Study of Chromatographic Behavior vs Alkyl Chain Length for HPLC Bonded Phases Containing an Embedded Carbamate Group. , 1999, Analytical chemistry.

[10]  M. L. La Rotonda,et al.  Chromatographic indexes on immobilized artificial membranes for the prediction of transdermal transport of drugs. , 1998, Farmaco.

[11]  David J. Begley,et al.  Potential of Immobilized Artificial Membranes for Predicting Drug Penetration Across the Blood−Brain Barrier , 1998, Pharmaceutical Research.

[12]  S. Goldstein,et al.  IAM retention and blood brain barrier penetration , 1998 .

[13]  M. Abraham,et al.  HYDROGEN BONDING. 42. CHARACTERIZATION OF REVERSED‐PHASE HIGH‐PERFORMANCE LIQUID CHROMATOGRAPHIC C18 STATIONARY PHASES , 1997 .

[14]  C. Pidgeon,et al.  Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability. , 1996, Journal of chromatography. A.

[15]  C. Pidgeon,et al.  IAM chromatography: an in vitro screen for predicting drug membrane permeability. , 1995, Journal of medicinal chemistry.

[16]  A. Buciński,et al.  Hydrophobicity parameter from high-performance liquid chromatography on an immobilized artificial membrane column and its relationship to bioactivity , 1995 .

[17]  E. Bosch,et al.  Linear description of solute retention in reversed-phase liquid chromatography by a new mobile phase polarity parameter , 1994 .

[18]  M. Abraham,et al.  Hydrogen bonding. 38. Effect of solute structure and mobile phase composition on reversed-phase high-performance liquid chromatographic capacity factors , 1994 .

[19]  R. Doherty,et al.  Hydrogen bonding: XVII. The characterisation of 24 gas-liquid chromatographic stationary phases studied by Poole and co-workers. including molten salts, and evaluation of solute-stationary phase interactions , 1991 .

[20]  L. Snyder,et al.  Prediction of precise isocratic retention data from two or more gradient elution runs. Analysis of some associated errors , 1986 .

[21]  J. W. Dolan,et al.  Gradient elution in high-performance liquid chromatography , 1979 .

[22]  J. Legendre,et al.  Determination of the passive absorption through the rat intestine using chromatographic indices and molar volume. , 2001, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[23]  C. Pidgeon,et al.  Immobilized artificial membrane chromatography: supports composed of membrane lipids. , 1989, Analytical biochemistry.