Uncooled Thermoelectric Infrared Sensor With Advanced Micromachining
暂无分享,去创建一个
Yuelin Wang | Guoqiang Wu | Dehui Xu | Yinglei Ma | Bin Xiong | Yuelin Wang | Dehui Xu | B. Xiong | Guoqiang Wu | Y. Ma
[1] Behraad Bahreyni,et al. Investigation and simulation of XeF2 isotropic etching of silicon , 2002 .
[2] Chengkuo Lee,et al. Characterization of Thermopile Based on Complementary Metal-Oxide-Semiconductor (CMOS) Materials and Post CMOS Micromachining , 2002 .
[3] A. Heuberger,et al. Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I . Orientation Dependence and Behavior of Passivation Layers , 1990 .
[4] Mona E. Zaghloul,et al. Hybrid postprocessing etching for CMOS-compatible MEMS , 1997 .
[5] Christian Menolfi,et al. Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array , 2001 .
[6] Koji Eriguchi,et al. Quantitative and comparative characterizations of plasma process-induced damage in advanced metal-oxide-semiconductor devices , 2008 .
[7] K. Bertilsson,et al. Experimental Evaluation of a Thermopile Detector With SU-8 Membrane in a Carbon Dioxide Meter Setup , 2009, IEEE Sensors Journal.
[8] Henry J. H. Chen,et al. Fabrication of high-aspect-ratio nanotips integrated with single-crystal silicon cantilevers , 2007 .
[9] M. Gaitan,et al. Wire-bonding process monitoring using thermopile temperature sensor , 2005, IEEE Transactions on Advanced Packaging.
[10] G. Pandraud,et al. Design and performance of a room-temperature terahertz detection array for real-time imaging , 2008, IEEE Journal of Selected Topics in Quantum Electronics.
[11] G. Gerlach,et al. Review of micromachined thermopiles for infrared detection , 2007 .
[12] Koji Sugano,et al. Reduction of surface roughness and aperture size effect for etching of Si with XeF2 , 2002 .
[13] O. Paul,et al. Process-dependent thin-film thermal conductivities for thermal CMOS MEMS , 2000, Journal of Microelectromechanical Systems.
[14] B. Warneke,et al. Controlled pulse-etching with xenon difluoride , 1997, International Conference on Solid-State Sensors, Actuators and Microsystems.
[15] Y. Nemirovsky,et al. Optimal performance of CMOS compatible IR thermoelectric sensors , 2000, Journal of Microelectromechanical Systems.
[16] Behraad Bahreyni. Deep etching of silicon with xenon difluoride , 2001 .
[17] A. Heuberger,et al. Anisotropic Etching of Crystalline Silicon in Alkaline Solutions II . Influence of Dopants , 1990 .
[18] Kum-Pyo Yoo,et al. Fabrication of thin-film thermopile micro-bridge with XeF2 etching process , 2008 .
[19] G. Kovacs,et al. Bulk micromachining of silicon , 1998, Proc. IEEE.
[20] Reinoud F. Wolffenbuttel,et al. State-of-the-art in integrated optical microspectrometers , 2004, IEEE Transactions on Instrumentation and Measurement.
[21] Martin Liess,et al. Reducing thermal transient induced errors in thermopile sensors in ear thermometer applications , 2009 .
[22] Z. Djuric,et al. Multipurpose MEMS thermal sensor based on thermopiles , 2008 .
[23] H. Baltes,et al. Thermoelectric infrared sensors by CMOS technology , 1992, IEEE Electron Device Letters.
[24] O. Brand,et al. Micromachined thermally based CMOS microsensors , 1998, Proc. IEEE.
[25] Kazuo Sato,et al. Fabrication techniques of convex corners in a (1 0 0)-silicon wafer using bulk micromachining: a review , 2007 .
[26] Tie Li,et al. Integrated micromachined thermopile IR detectors with an XeF2 dry-etching process , 2009 .
[27] Eran Socher,et al. Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors , 1998 .