Evolution of neural networks

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author. GECCO ’20 Companion, July 8–12, 2020, Cancun, Mexico 2020 Copyright is held by the owner/author(s). ACM ISBN 978-1-4503-7127-8/20/07. https://doi.org/10.1145/3377929.3389858

[1]  Kenneth O. Stanley,et al.  A novel generative encoding for exploiting neural network sensor and output geometry , 2007, GECCO '07.

[2]  Risto Miikkulainen,et al.  Robust non-linear control through neuroevolution , 2003 .

[3]  Elliot Meyerson,et al.  Evolutionary architecture search for deep multitask networks , 2018, GECCO.

[4]  Elliot Meyerson,et al.  Effective reinforcement learning through evolutionary surrogate-assisted prescription , 2020, GECCO.

[5]  R. Miikkulainen,et al.  Learning Behavior Characterizations for Novelty Search , 2016, GECCO.

[6]  Quoc V. Le,et al.  Evolving Normalization-Activation Layers , 2020, NeurIPS.

[7]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[8]  Alexis P. Wieland,et al.  Evolving Controls for Unstable Systems , 1991 .

[9]  L. Darrell Whitley,et al.  Adding Learning to the Cellular Development of Neural Networks: Evolution and the Baldwin Effect , 1993, Evolutionary Computation.

[10]  Risto Miikkulainen,et al.  Incremental Evolution of Complex General Behavior , 1997, Adapt. Behav..

[11]  Risto Miikkulainen,et al.  Evolving symmetric and modular neural networks for distributed control , 2009, GECCO.

[12]  X. Yao Evolving Artificial Neural Networks , 1999 .

[13]  David J. Chalmers,et al.  The Evolution of Learning: An Experiment in Genetic Connectionism , 1991 .

[14]  Elliot Meyerson,et al.  Modular Universal Reparameterization: Deep Multi-task Learning Across Diverse Domains , 2019, NeurIPS.

[15]  Risto Miikkulainen,et al.  Creative AI Through Evolutionary Computation: Principles and Examples , 2019, SN Computer Science.

[16]  Risto Miikkulainen,et al.  Evolving adaptive neural networks with and without adaptive synapses , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[17]  Magnus Thor Jonsson,et al.  Evolution and design of distributed learning rules , 2000, 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No.00.

[18]  Risto Miikkulainen,et al.  Population-Based Training for Loss Function Optimization , 2020, ArXiv.

[19]  Kenneth O. Stanley,et al.  Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space , 2011, Evolutionary Computation.

[20]  Marco Colombetti,et al.  Incremental Robot Shaping , 1998, Connect. Sci..

[21]  Brad Fullmer and Risto Miikkulainen Using Marker-Based Genetic Encoding Of Neural Networks To Evolve Finite-State Behaviour , 1991 .

[22]  Risto Miikkulainen,et al.  Forming Neural Networks Through Efficient and Adaptive Coevolution , 1997, Evolutionary Computation.

[23]  Risto Miikkulainen,et al.  Accelerating evolution via egalitarian social learning , 2012, GECCO '12.

[24]  Risto Miikkulainen,et al.  Acquiring evolvability through adaptive representations , 2007, GECCO '07.

[25]  Kalyanmoy Deb,et al.  A population-based fast algorithm for a billion-dimensional resource allocation problem with integer variables , 2017, Eur. J. Oper. Res..

[26]  Risto Miikkulainen,et al.  Open-ended behavioral complexity for evolved virtual creatures , 2013, GECCO '13.

[27]  Kenneth O. Stanley,et al.  Abandoning Objectives: Evolution Through the Search for Novelty Alone , 2011, Evolutionary Computation.

[28]  Simon M. Lucas,et al.  A comparison of matrix rewriting versus direct encoding for evolving neural networks , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[29]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Risto Miikkulainen,et al.  Constructing competitive and cooperative agent behavior using coevolution , 2010, CIG.

[31]  Risto Miikkulainen,et al.  Evolving agent behavior in multiobjective domains using fitness-based shaping , 2010, GECCO '10.

[32]  Kenneth O. Stanley,et al.  Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning , 2017, ArXiv.

[33]  Kenneth O. Stanley,et al.  POET: open-ended coevolution of environments and their optimized solutions , 2019, GECCO.

[34]  H. P. de Vladar,et al.  Why Greatness Cannot Be Planned: The Myth of the Objective , 2016, Leonardo.

[35]  J. D. Schaffer,et al.  Combinations of genetic algorithms and neural networks: a survey of the state of the art , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[36]  David H. Sharp,et al.  Scaling, machine learning, and genetic neural nets , 1989 .

[37]  Shimon Whiteson,et al.  Evolutionary Function Approximation for Reinforcement Learning , 2006, J. Mach. Learn. Res..

[38]  Risto Miikkulainen,et al.  Acquiring Visibly Intelligent Behavior with Example-Guided Neuroevolution , 2007, AAAI.

[39]  Risto Miikkulainen,et al.  Evolving neural network ensembles for control problems , 2005, GECCO '05.

[40]  Risto Miikkulainen,et al.  Evolving Keepaway Soccer Players through Task Decomposition , 2003, GECCO.

[41]  Risto Miikkulainen,et al.  Enhanced optimization with composite objectives and novelty pulsation , 2019, GECCO.

[42]  Karl Sims,et al.  Evolving 3D Morphology and Behavior by Competition , 1994, Artificial Life.

[43]  Christian Igel,et al.  Neuroevolution for reinforcement learning using evolution strategies , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[44]  Holger H. Hoos,et al.  Programming by optimization , 2012, Commun. ACM.

[45]  Risto Miikkulainen,et al.  Evolutionary optimization of deep learning activation functions , 2020, GECCO.

[46]  Risto Miikkulainen,et al.  Efficient evolution of neural networks through complexification , 2004 .

[47]  Peter J. Angeline,et al.  An evolutionary algorithm that constructs recurrent neural networks , 1994, IEEE Trans. Neural Networks.

[48]  Dario Floreano,et al.  Neuroevolution: from architectures to learning , 2008, Evol. Intell..

[49]  Risto Miikkulainen,et al.  A Taxonomy for Artificial Embryogeny , 2003, Artificial Life.

[50]  Risto Miikkulainen,et al.  Accelerated Neural Evolution through Cooperatively Coevolved Synapses , 2008, J. Mach. Learn. Res..

[51]  Risto Miikkulainen,et al.  Improved Training Speed, Accuracy, and Data Utilization Through Loss Function Optimization , 2019, 2020 IEEE Congress on Evolutionary Computation (CEC).

[52]  Risto Miikkulainen,et al.  Evolving Reusable Neural Modules , 2004, GECCO.

[53]  Richard K. Belew,et al.  Evolution, Learning, and Culture: Computational Metaphors for Adaptive Algorithms , 1990, Complex Syst..

[54]  Risto Miikkulainen,et al.  Human-Like Combat Behaviour via Multiobjective Neuroevolution , 2012, Believable Bots.

[55]  Kenneth O. Stanley,et al.  A Case Study on the Critical Role of Geometric Regularity in Machine Learning , 2008, AAAI.

[56]  Alok Aggarwal,et al.  Regularized Evolution for Image Classifier Architecture Search , 2018, AAAI.

[57]  Kenneth A. De Jong,et al.  Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.

[58]  Kenneth O. Stanley,et al.  Generative encoding for multiagent learning , 2008, GECCO '08.

[59]  Elliot Meyerson,et al.  Pseudo-task Augmentation: From Deep Multitask Learning to Intratask Sharing - and Back , 2018, ICML.

[60]  Risto Miikkulainen,et al.  Evolving Adaptive Poker Players for Effective Opponent Exploitation , 2017, AAAI Workshops.

[61]  Max Jaderberg,et al.  Population Based Training of Neural Networks , 2017, ArXiv.

[62]  Xin Yao,et al.  Evolutionary ensembles with negative correlation learning , 2000, IEEE Trans. Evol. Comput..

[63]  Dario Floreano,et al.  Evolutionary robots with on-line self-organization and behavioral fitness , 2000, Neural Networks.

[64]  Risto Miikkulainen,et al.  Task decomposition with neuroevolution in extended predator-prey domain , 2012, ALIFE.

[65]  Risto Miikkulainen,et al.  Cultural enhancement of neuroevolution , 2002 .

[66]  Shimon Whiteson,et al.  Neuroevolutionary reinforcement learning for generalized control of simulated helicopters , 2011, Evol. Intell..

[67]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[68]  Stefano Nolfi,et al.  Good teaching inputs do not correspond to desired responses in ecological neural networks , 1994, Neural Processing Letters.

[69]  Risto Miikkulainen,et al.  Trading control intelligence for physical intelligence: muscle drives in evolved virtual creatures , 2014, GECCO.

[70]  Elliot Meyerson,et al.  Discovering evolutionary stepping stones through behavior domination , 2017, GECCO.

[71]  Elliot Meyerson,et al.  Evolutionary neural AutoML for deep learning , 2019, GECCO.

[72]  Kenneth O. Stanley,et al.  ES is more than just a traditional finite-difference approximator , 2017, GECCO.

[73]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[74]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[75]  Risto Miikkulainen,et al.  Evolutionary Bilevel Optimization for Complex Control Tasks , 2015, GECCO.

[76]  Quoc V. Le,et al.  AutoML-Zero: Evolving Machine Learning Algorithms From Scratch , 2020, ICML.

[77]  Risto Miikkulainen,et al.  Efficient credit assignment through evaluation function decomposition , 2005, GECCO '05.

[78]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[79]  L. D. Whitley,et al.  Genetic Reinforcement Learning for Neurocontrol Problems , 2004, Machine Learning.