All-quad meshing without cleanup

We present an all-quad meshing algorithm for general domains. We start with a strongly balanced quadtree. In contrast to snapping the quadtree corners onto the geometric domain boundaries, we move them away from the geometry. Then we intersect the moved grid with the geometry. The resulting polygons are converted into quads with midpoint subdivision. Moving away avoids creating any flat angles, either at a quadtree corner or at a geometryquadtree intersection. We are able to handle two-sided domains, and more complex topologies than prior methods. The algorithm is provably correct and robust in practice. It is cleanup-free, meaning we have angle and edge length bounds without the use of any pillowing, swapping, or smoothing. Thus, our simple algorithm is fast and predictable. This paper has better quality bounds, and the algorithm is demonstrated over more complex domains, than our prior version.

[1]  David Eppstein,et al.  Diamond-kite adaptive quadrilateral meshing , 2012, Engineering with Computers.

[2]  F. Betul Atalay,et al.  Quadrilateral meshes with bounded minimum angle , 2009, SCG '09.

[3]  Timothy J. Tautges,et al.  Pillowing doublets: Refining a mesh to ensure that faces share at most one edge , 1995 .

[4]  F. Weiler,et al.  Octree-based Generation of Hexahedral Element Meshes , 2007 .

[5]  David Eppstein,et al.  Quadrilateral Meshing by Circle Packing , 1999, Int. J. Comput. Geom. Appl..

[6]  Springer-Verlag London Limited Matching interior and exterior all-quadrilateral meshes with guaranteed angle bounds , 2012 .

[7]  Steven E. Benzley,et al.  Automatic All Quadrilateral Mesh Adaption through Refinement and Coarsening , 2009, IMR.

[8]  Mohamed S. Ebeida,et al.  Isotropic conforming refinement of quadrilateral and hexahedral meshes using two‐refinement templates , 2011 .

[9]  K. Ho-Le,et al.  Finite element mesh generation methods: a review and classification , 1988 .

[10]  Mohamed S. Ebeida,et al.  Q-TRAN: A New Approach to Transform Triangular Meshes into Quadrilateral Meshes Locally , 2010, IMR.

[11]  Ahmad A Rushdi,et al.  Robust All-quad Meshing of Domains with Connected Regions. , 2015, Procedia engineering.

[12]  K. R. Grice,et al.  Robust, geometrically based, automatic two‐dimensional mesh generation , 1987 .

[13]  Patrick M. Knupp,et al.  The Mesquite Mesh Quality Improvement Toolkit , 2003, IMR.

[14]  Qi Chen,et al.  Analyzing midpoint subdivision , 2009, Comput. Aided Geom. Des..

[15]  Jin Qian,et al.  Dual Contouring for Domains with Topology Ambiguity , 2012, IMR.

[16]  P. Knupp,et al.  Triangular and quadrilateral surface mesh quality optimization using local parametrization , 2004 .

[17]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[18]  A. Serrano,et al.  Formulation and procedure to treat a discrete particle model as a continuum , 2011 .

[19]  Mohamed S. Ebeida,et al.  Delaunay Quadrangulation by Two-coloring Vertices , 2014 .

[20]  Hugues Hoppe,et al.  Design of tangent vector fields , 2007, SIGGRAPH 2007.

[21]  Marc Pouget,et al.  Estimating differential quantities using polynomial fitting of osculating jets , 2003, Comput. Aided Geom. Des..

[22]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[23]  Mohamed S. Ebeida,et al.  Guaranteed-Quality All-Quadrilateral Mesh Generation with Feature Preservation , 2009, IMR.

[24]  David R. White,et al.  Redesign of the Paving Algorithm : Robustness Enhancements through Element by Element Meshing , 2007 .

[25]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[26]  Mohamed S. Ebeida,et al.  Delaunay Quadrangulation by Two-coloring Vertices , 2014 .

[27]  Kunwoo Lee,et al.  Principles of CAD/CAM/CAE Systems , 1999 .

[28]  Vladimir D. Liseikin,et al.  Grid Generation Methods , 1999 .

[29]  Satyandra K. Gupta,et al.  A survey of CAD model simplification techniques for physics-based simulation applications , 2009, Comput. Aided Des..

[30]  Cláudio T. Silva,et al.  Quadrilateral mesh simplification , 2008, SIGGRAPH 2008.

[31]  Yongjie Zhang,et al.  Hexagon-Based All-Quadrilateral Mesh Generation with Guaranteed Angle Bounds , 2010, IMR.

[32]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[33]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[34]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[35]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .

[36]  Kenji Shimada,et al.  Quadrilateral Meshing with Directionality Control through the Packing of Square Cells , 1998, IMR.

[37]  O. Zienkiewicz,et al.  A new approach to the development of automatic quadrilateral mesh generation , 1991 .