Formation of SiP 2 Nanocrystals Embedded in SiO 2 from Phosphorus-Rich SiO 1.5 Thin Films

We investigate the structural, vibrational and optical properties of phosphorus-rich SiO 1.5 thin films annealed at 1100°C. For phosphorus (P) contents larger than 3 at. %, high resolution transmission electron microscopy characterizations reveal the presence of both spherical shaped SiP 2 nanoparticles crystallizing in an orthorhombic structure and bumps in epitaxy with the underlying Si substrate. Energy dispersive spectroscopy measurements confirm the SiP 2 stoichiometry. Moreover, electron energy loss spectroscopy characterizations allow us to determine the exact location of P and Si atoms. Apart from SiP 2 nanoparticles, P atoms are found to be located in the bumps and in the Si substrate to a level of 1 at. %, which is explained by P diffusion during annealing. The vibrational properties determined by Raman spectroscopy are found to be in excellent agreement with density functional theory calculations of the vibration modes for the SiP 2 alloy. Finally, the quenching of the photoluminescence with the increasing P content is explained on the basis of the structural data.

[1]  Yuefei Zhang,et al.  Enhanced Silicon Diphosphide-Carbon Composite Anode for Long-Cycle, High-Efficient Sodium Ion Batteries , 2019, ACS Applied Energy Materials.

[2]  Hsing-Yu Tuan,et al.  Multi-walled carbon nanotube-wrapped SiP2 as a superior anode material for lithium-ion and sodium-ion batteries , 2018, Journal of Power Sources.

[3]  A. Du,et al.  Versatile two-dimensional silicon diphosphide (SiP2) for photocatalytic water splitting. , 2018, Nanoscale.

[4]  L. Giebeler,et al.  Surface and Electrochemical Studies on Silicon Diphosphide as Easy-to-Handle Anode Material for Lithium-Based Batteries-the Phosphorus Path. , 2018, ACS applied materials & interfaces.

[5]  Kostiantyn V. Sopiha,et al.  Tailoring electronic properties of multilayer phosphorene by siliconization. , 2017, Physical chemistry chemical physics : PCCP.

[6]  H. Zeng,et al.  Two-dimensional SiP: an unexplored direct band-gap semiconductor , 2016 .

[7]  A. Slaoui,et al.  Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals , 2016 .

[8]  U. Kortshagen,et al.  Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus. , 2015, Nano letters.

[9]  S. Koester,et al.  Atomic and electronic structure of exfoliated black phosphorus , 2015 .

[10]  M. Zacharias,et al.  Location and Electronic Nature of Phosphorus in the Si Nanocrystal − SiO2 System , 2015, Scientific Reports.

[11]  M. Zacharias,et al.  Electronic properties of phosphorus doped silicon nanocrystals embedded in SiO2 , 2015 .

[12]  T. Nozaki,et al.  Boron‐ and Phosphorus‐Hyperdoped Silicon Nanocrystals , 2015 .

[13]  Yi Ding,et al.  Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. , 2015, ACS nano.

[14]  X. Zhang,et al.  Structure and growth of single crystal SiP 2 using flux method , 2014 .

[15]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[16]  R. Schmid-Fetzer,et al.  Modeling of Thermodynamic Properties and Phase Equilibria of the Si-P System , 2014 .

[17]  X. Pi,et al.  Tight-binding calculations of the optical response of optimally P-doped Si nanocrystals: a model for localized surface plasmon resonance. , 2013, Physical review letters.

[18]  Thomas Bredow,et al.  Consistent Gaussian basis sets of triple‐zeta valence with polarization quality for solid‐state calculations , 2013, J. Comput. Chem..

[19]  M. Roussel,et al.  Efficient n-type doping of Si nanocrystals embedded in SiO2 by ion beam synthesis , 2013 .

[20]  F. Pielnhofer,et al.  First principles calculations on structure, bonding, and vibrational frequencies of SiP2. , 2011, The Journal of chemical physics.

[21]  J. Safarian,et al.  Phase diagram study of the Si–P system in Si-rich region , 2011 .

[22]  M. Perego,et al.  Phosphorus doping of ultra-small silicon nanocrystals , 2010, Nanotechnology.

[23]  R. Weihrich,et al.  Ab initio simulation of the fundamental vibrational frequencies of selected pyrite-type pnictides , 2008 .

[24]  James R Chelikowsky,et al.  Self-purification in semiconductor nanocrystals. , 2006, Physical review letters.

[25]  M. Fujii,et al.  Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals , 2000 .

[26]  P. Gaworzewski,et al.  Heavy phosphorus doping in molecular beam epitaxial grown silicon with a GaP decomposition source , 1995 .

[27]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[28]  O. Farberovich,et al.  Band structure and density of states in SiP2 , 1975 .

[29]  A. Springthorpe The preparation of single crystal orthorhombic SiP2 , 1969 .

[30]  J. L. Gillson,et al.  Preparation and properties of pyrite-type SiP2 and SiAs2 , 1968 .

[31]  H. Vogt,et al.  Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 and SiP2 , 1983 .

[32]  S. J. Cyvin,et al.  Synthesis of a Pyrite-Type Modification of SiP2. , 1967 .

[33]  L. Ehrenberg,et al.  The Crystal Structures of SiP2, SiAs2, and GeP. , 1967 .