Nonlinear predictive control based on artificial neural network model for industrial crystallization

This paper illustrates the benefits of a nonlinear model based predictive control (NMPC) strategy for setpoint tracking control of an industrial crystallization process. A neural networks model is used as internal model to predict process outputs. An optimization problem is solved to compute future control actions taking into account real-time control objectives. Furthermore, a more suitable output variable is used for process control: the mass of crystals in the solution is used instead of the traditional electrical conductivity. The performance of the NMPC implementation is assessed via simulation results based on industrial data.

[1]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[2]  Alfred Jean Philippe Lauret,et al.  Hybrid modelling of a sugar boiling process , 2000, 1212.5251.

[3]  Mustafa Turker,et al.  Nonlinear predictive control of a drying process using genetic algorithms. , 2006, ISA transactions.

[4]  D. Ramkrishna The Status of Population Balances , 1985 .

[5]  K. Saidi,et al.  Steady state modeling and simulation of an industrial sugar continuous crystallizer , 2001 .

[6]  Michel Benne,et al.  Supervision of C crystallisation in Bois Rouge sugar mill using on-line crystal content estimation using synchronous microwave and refractometric brix measurements , 2006 .

[7]  C. Monteil,et al.  Techniques de l'Ingénieur , 1961 .

[8]  Daniel Sarabia,et al.  A strategy for predictive control of a mixed continuous batch process , 2009 .

[9]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[10]  Michel Benne,et al.  Industrial multi-step forward predictor of mother liquor purity of the final stage of a cane sugar crystallisation plant , 2005 .

[11]  Zoltan K. Nagy,et al.  Model based robust control approach for batch crystallization product design , 2009, Comput. Chem. Eng..

[12]  Ferenc Szeifert,et al.  Model predictive control of MSMPR crystallizers , 2005 .

[13]  Zoltan K. Nagy,et al.  Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor , 2007 .

[14]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[15]  Petia Georgieva,et al.  Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process , 2007 .

[16]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[17]  Petia Georgieva,et al.  Knowledge-based hybrid modelling of a batch crystallisation when accounting for nucleation, growth and agglomeration phenomena , 2003 .

[18]  Xiangdong He,et al.  A New Method for Identifying Orders of Input-Output Models for Nonlinear Dynamic Systems , 1993, 1993 American Control Conference.

[19]  Yash P Gupta,et al.  Control of nonlinear processes by using linear model predictive control algorithms. , 2008, ISA transactions.

[20]  Mircea Vasile Cristea,et al.  Neural networks based model predictive control of the drying process , 2003 .

[21]  Stephanie Cecile Barthe Utilization of FBRM in the Control of CSD in a Batch Cooled Crystallizer , 2006 .