Infrastructure for Intelligent Automation Services in the Smart Grid

The electricity grid is undergoing a radical transformation from a production-driven to a demand-driven energy delivery platform known as the smart grid. The integration of a large amount of renewable and distributed energy resources, together with new patterns of electricity production, accentuates the need for research in information and communication technologies to control bi-directional energy flows. The European FP7 project: “Energy Demand Aware Open Services for Smart Grid Intelligent Automation” is contributing to this research by providing an intelligent infrastructure for service deployment for the smart grid. The project defines a system architecture that provides interoperability between wireless sensors in home area networks connected over the Internet to a service provider function deployed in a cloud infrastructure. A key component in this infrastructure is the Home Energy Controlling Hub that, on the one hand, provides a platform for monitoring and aggregation of electricity consumption data from devices and appliances and, on the other hand, is the link between the deployed intelligent automation services and the home. To ensure openness and simplicity, the proposed infrastructure is based on the representational state transfer style architecture. This is adopted by implementing the emerging ZigBee IP and Smart Energy Profile 2.0 standards that to a wide extend conform with the Internet Protocol suite and state-of-the art web services development.

[1]  Stuart Cheshire,et al.  DNS-Based Service Discovery , 2013, RFC.

[2]  Bogdan M. Wilamowski,et al.  The Transmission Control Protocol , 2005, The Industrial Information Technology Handbook.

[3]  Carsten Bormann,et al.  Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) , 2012, RFC.

[4]  C. M. Sperberg-McQueen,et al.  Extensible Markup Language (XML) , 1997, World Wide Web J..

[5]  Carsten Bormann,et al.  The Constrained Application Protocol (CoAP) , 2014, RFC.

[6]  Eric Rescorla,et al.  Datagram Transport Layer Security Version 1.2 , 2012, RFC.

[7]  Dan Forsberg,et al.  Protocol for Carrying Authentication for Network Access (PANA) , 2008, RFC.

[8]  Christopher Edwards,et al.  A Scenario-Based Review of IPv6 Transition Tools , 2003, IEEE Internet Comput..

[9]  Thilo Sauter,et al.  End-to-End Communication Architecture for Smart Grids , 2011, IEEE Transactions on Industrial Electronics.

[10]  Roy T. Fielding,et al.  Uniform Resource Identifier (URI): Generic Syntax , 2005, RFC.

[11]  Khosrow Moslehi,et al.  A Reliability Perspective of the Smart Grid , 2010, IEEE Transactions on Smart Grid.

[12]  Jean-Philippe Vasseur,et al.  The Routing Protocol for Low-Power and Lossy Networks (RPL) Option for Carrying RPL Information in Data-Plane Datagrams , 2010, RFC.

[13]  Mike P. Papazoglou,et al.  Service-oriented computing: concepts, characteristics and directions , 2003, Proceedings of the Fourth International Conference on Web Information Systems Engineering, 2003. WISE 2003..

[14]  Eric Rescorla,et al.  HTTP Over TLS , 2000, RFC.

[15]  Roy T. Fielding,et al.  Hypertext Transfer Protocol - HTTP/1.1 , 1997, RFC.

[16]  David Cooper,et al.  Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile , 2008, RFC.

[17]  Sebnem Rusitschka,et al.  Smart Grid Data Cloud: A Model for Utilizing Cloud Computing in the Smart Grid Domain , 2010, 2010 First IEEE International Conference on Smart Grid Communications.

[18]  Fred Baker,et al.  Internet Protocols for the Smart Grid , 2011, RFC.

[19]  Deo Prakash Vidyarthi Technologies and Protocols for the Future of Internet Design: Reinventing the Web , 2012 .

[20]  Tim Dierks,et al.  The Transport Layer Security (TLS) Protocol Version 1.2 , 2008 .

[21]  Douglas Crockford,et al.  The application/json Media Type for JavaScript Object Notation (JSON) , 2006, RFC.

[22]  Dan Simon,et al.  PPP EAP TLS Authentication Protocol , 1999, RFC.

[23]  Stephen E. Deering,et al.  Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification , 2006, RFC.

[24]  Jon Postel,et al.  User Datagram Protocol , 1980, RFC.

[25]  Salekul Islam,et al.  Network Edge Intelligence for the Emerging Next-Generation Internet , 2010, Future Internet.

[26]  Erik Nordmark,et al.  Basic Transition Mechanisms for IPv6 Hosts and Routers , 2005, RFC.

[27]  David E. Culler,et al.  IPv6 in Low-Power Wireless Networks , 2010, Proceedings of the IEEE.

[28]  寺岡 文男,et al.  Protocol for carrying Authentication for Network Access (PANA) を利用したネットワークアクセス認証システムの実装と検証 , 2007 .

[29]  Sam Ruby,et al.  RESTful Web Services , 2007 .

[30]  Carles Gomez,et al.  Wireless home automation networks: A survey of architectures and technologies , 2010, IEEE Communications Magazine.

[31]  Erik Nordmark,et al.  Transition Mechanisms for IPv6 Hosts and Routers , 1996, RFC.

[32]  Dan Simon,et al.  The EAP-TLS Authentication Protocol , 2008, RFC.

[33]  Arindam Mukherjee,et al.  Chapter 2 – A Survey of Contemporary Technologies for Smart Home Energy Management , 2013 .

[34]  Philip Levis,et al.  RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks , 2012, RFC.

[35]  Richard Kelsey Mesh Link Establishment , 2014 .

[36]  Larry J. Blunk,et al.  PPP Extensible Authentication Protocol (EAP) , 1998, RFC.

[37]  Dominique Barthel,et al.  Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks , 2012, RFC.

[38]  Rune Hylsberg Jacobsen,et al.  IP Connected Low Power Wireless Personal Area Networks in the Future Internet , 2012 .

[39]  Roy T. Fielding,et al.  Uniform Resource Identifiers (URI): Generic Syntax , 1998, RFC.

[40]  Eric Rescorla,et al.  The Transport Layer Security (TLS) Protocol Version 1.2 , 2008, RFC.

[41]  David E. Culler,et al.  Transmission of IPv6 Packets over IEEE 802.15.4 Networks , 2007, RFC.

[42]  Russ Housley,et al.  Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile , 2002, RFC.