Magneto-induced microstructure characterization of magnetorheological plastomers using impedance spectroscopy

An impedance spectroscopy (IS) method is employed to investigate the magneto-induced microstructure mechanism of magnetorheological plastomers (MRP). The IS of MRP with two typical particle distributions (isotropic and anisotropic) are compared and an equivalent circuit model is proposed to analyze the different impedance responses. It is found that the IS of anisotropic MRP is quite sensitive to the magnetic field and the electron diffusion effect will be restricted in the presence of a magnetic field. Furthermore, the conduction behavior of MRP in the presence of a magnetic field reveals the existence of elasticity in the polymer matrix. The influence of particle chain direction on the conductivity of anisotropic MRP with different particle contents is also investigated. Based on the experimental results, an equivalent method is developed to quantitatively characterize the anisotropy of MRP. With this method, the microstructure-dependent conduction mechanism of MRP can be presented more clearly.

[1]  U. Starke,et al.  Silicon‐Doped LiFePO4 Single Crystals: Growth, Conductivity Behavior, and Diffusivity , 2009 .

[2]  I. Bica Magnetorheological elastomer-based quadrupolar element of electric circuits , 2010 .

[3]  I. Willner,et al.  Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA‐Sensors, and Enzyme Biosensors , 2003 .

[4]  Shi Tang,et al.  Shedding Light on the Operation of Polymer Light‐Emitting Electrochemical Cells Using Impedance Spectroscopy , 2012 .

[5]  Georges Bossis,et al.  ELECTROACTIVE AND ELECTROSTRUCTURED ELASTOMERS , 2001 .

[6]  G. Bossis,et al.  Thermoresistance and giant magnetoresistance of magnetorheological elastomers , 2009 .

[7]  Xili Gao,et al.  Geometrical enhancement of low-field magnetoresistance in silicon , 2011, Nature.

[8]  Tetsu Mitsumata,et al.  Magnetic polyurethane elastomers with wide range modulation of elasticity , 2011 .

[9]  R. Newnham,et al.  Electrical Resistivity of Composites , 1990 .

[10]  Xin Lan,et al.  Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite , 2008 .

[11]  X. Gong,et al.  The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry , 2012 .

[12]  P. Peer,et al.  Correlation of structural and magnetic properties of Fe3O4 nanoparticles with their calorimetric and magnetorheological performance , 2013 .

[13]  Abbas A. Dehghani-Sanij,et al.  Carbon based conductive polymer composites , 2007 .

[14]  I. Bica Electroconductive Magnetorheological Suspensions: Production and Physical Processes , 2009 .

[15]  D. McLachlan Analytical Functions for the dc and ac Conductivity of Conductor-Insulator Composites , 2000 .

[16]  Georges Bossis,et al.  Electrical resistivity mechanism in magnetorheological elastomer , 2009 .

[17]  Wei Zhang,et al.  A high-performance magnetorheological material: preparation, characterization and magnetic-mechanic coupling properties , 2011 .

[18]  Weihua Li,et al.  Viscoelastic properties of MR elastomers under harmonic loading , 2010 .

[19]  M. Yumura,et al.  Polymer Composites of Carbon Nanotubes Aligned by a Magnetic Field , 2002 .

[20]  Petr Filip,et al.  Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids , 2011 .

[21]  M. Zrínyi,et al.  Magnetic field sensitive functional elastomers with tuneable elastic modulus , 2006 .

[22]  H. Thomas Hahn,et al.  Giant Magnetoresistance Behavior of an Iron/Carbonized Polyurethane Nanocomposite , 2007 .

[23]  Stanislaw Pietrzko,et al.  Mechanical properties of magnetorheological elastomers under shear deformation , 2012 .

[24]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[25]  O. E. Pérez,et al.  Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[26]  Thomas O. Mason,et al.  A universal equivalent circuit model for the impedance response of composites , 2003 .

[27]  Xinglong Gong,et al.  Magnetic-Field-Induced Normal Force of Magnetorheological Elastomer under Compression Status , 2012 .

[28]  Xinglong Gong,et al.  Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers , 2007 .

[29]  Xinglong Gong,et al.  Creep and recovery behaviors of magnetorheological plastomer and its magnetic-dependent properties , 2012 .

[30]  Ioan Bica,et al.  Influence of the magnetic field on the electric conductivity of magnetorheological elastomers , 2010 .

[31]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[32]  K. Shimizu,et al.  Positive-temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle-dispersed PVDF composites , 2012 .

[33]  Xin Lan,et al.  Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains , 2008 .

[34]  X. Gong,et al.  Physically crosslinked poly(vinyl alcohol) hydrogels with magnetic field controlled modulus , 2011 .

[35]  Nonlinear pressure-dependent conductivity of magnetorheological elastomers , 2010 .

[36]  Tongfei Tian,et al.  Sensing capabilities of graphite based MR elastomers , 2011 .

[37]  Ioan Bica,et al.  The influence of hydrostatic pressure and transverse magnetic field on the electric conductivity of the magnetorheological elastomers , 2012 .

[38]  John T. S. Irvine,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[39]  G. Bossis,et al.  Piezoresistivity of magnetorheological elastomers , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  F. Gordaninejad,et al.  Sensing Behavior of Magnetorheological Elastomers , 2009 .