Expert systems in manufacturing processes using soft computing

This paper presents a review on soft computing-based expert systems developed to establish input-output relationships of various manufacturing processes. To determine these relationships, both fuzzy logic- and neural network-based approaches were tried. Reasonably good results were obtained using the developed approaches. However, there is a chance of further improvement of the results. The scopes for future study have also been discussed.

[1]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[2]  James C. Bezdek,et al.  Fuzzy mathematics in pattern classification , 1973 .

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[7]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[8]  Alvin M. Strauss,et al.  Weld modeling and control using artificial neural networks , 1993 .

[9]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[10]  C. Butler,et al.  MODELLING AND OPTIMIZING OF A MIG WELDING PROCESS—A CASE STUDY USING EXPERIMENTAL DESIGNS AND NEURAL NETWORKS , 1997 .

[11]  M.T.C. Fang,et al.  Modelling of submerged arc weld beads using self-adaptive offset neutral networks , 1997 .

[12]  Y. S. Tarng,et al.  A comparison between the back-propagation and counter-propagation networks in the modeling of the TIG welding process , 1998 .

[13]  László Monostori,et al.  A general, ANN-based cutting model and its application in different phases of manufacturing , 1999 .

[14]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[15]  Y. S Tarng,et al.  Modeling, optimization and classification of weld quality in tungsten inert gas welding , 1999 .

[16]  Shih-Chieh Lin,et al.  Using neural networks to predict bending angle of sheet metal formed by laser , 2000 .

[17]  D. J. Kim,et al.  Application of neural network and FEM for metal forming processes , 2000 .

[18]  Joachim V. R. Heberlein,et al.  Diagnostics and modeling of an argon/helium plasma spray process , 2000 .

[19]  D. S. Nagesh,et al.  Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks , 2002 .

[20]  Prasad K. Yarlagadda,et al.  Prediction of welding parameters for pipeline welding using an intelligent system , 2002 .

[21]  Antonio Domenico Ludovico,et al.  Parameter selection by an artificial neural network for a laser bending process , 2002 .

[22]  Dilip Kumar Pratihar,et al.  Design of a genetic-fuzzy system to predict surface finish and power requirement in grinding , 2004, Fuzzy Sets Syst..

[23]  Dilip Kumar Pratihar,et al.  An expert system based on FBFN using a GA to predict surface finish in ultra-precision turning , 2004 .

[24]  Sofiane Guessasma,et al.  Neural computation applied to APS spray process : Porosity analysis , 2005 .

[25]  Wisley Falco Sales,et al.  Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network , 2005 .

[26]  A. Mandal,et al.  Modeling the compressive strength of molasses-cement sand system using design of experiments and back propagation neural network , 2006 .

[27]  Nabil Gindy,et al.  A user-friendly fuzzy-based system for the selection of electro discharge machining process parameters , 2006 .

[28]  Zhenqiang Yao,et al.  Fuzzy logic model for bending angle in laser forming , 2006 .

[29]  Bor-Tsuen Lin,et al.  Design of a fuzzy logic approach for optimization reinforced zirconia depositions using plasma sprayings , 2006 .

[30]  A. M. M. Sharif Ullah,et al.  A human-assisted knowledge extraction method for machining operations , 2006, Adv. Eng. Informatics.

[31]  Dilip Kumar Pratihar,et al.  Some studies on mapping methods , 2006, Int. J. Bus. Intell. Data Min..

[32]  R. K. Ohdar,et al.  Evaluation of green compressive strength of clay bonded moulding sand mix: neural network and neuro-fuzzy based approaches , 2006 .

[33]  Dilip Kumar Pratihar,et al.  Modelling of input–output relationships in cement bonded moulding sand system using neural networks , 2007 .

[34]  G. L. Datta,et al.  Controlling green sand mould properties using artificial neural networks and genetic algorithms — A comparison , 2007 .

[35]  Dilip Kumar Pratihar,et al.  Modeling of TIG welding process using conventional regression analysis and neural network-based approaches , 2007 .

[36]  Dilip Kumar Pratihar,et al.  Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process , 2007 .

[37]  Tarasankar DebRoy,et al.  Tailoring gas tungsten arc weld geometry using a genetic algorithm and a neural network trained with convective heat flow calculations , 2007 .

[38]  Marco A. Ramírez-Argáez,et al.  Numerical Simulation of Fluid Flow and Mixing in Gas-Stirred Ladles , 2007 .

[39]  Dilip Kumar Pratihar,et al.  Modeling of TIG welding and abrasive flow machining processes using radial basis function networks , 2008 .

[40]  Yong Huang,et al.  CBN tool flank wear modelling using Hybrid Neural Network , 2008 .

[41]  Dilip Kumar Pratihar,et al.  Neural Network-Based Approaches for Forward and Reverse Mappings of Sodium Silicate-Bonded, Carbon Dioxide Gas Hardened Moulding Sand System , 2008 .

[42]  Dilip Kumar Pratihar,et al.  Developing fuzzy classifiers to predict the chance of occurrence of adult psychoses , 2008, Knowl. Based Syst..

[43]  Dilip Kumar Pratihar,et al.  Forward and reverse mappings in green sand mould system using neural networks , 2008, Appl. Soft Comput..

[44]  K. Hans Raj,et al.  Neuro-fuzzy modeling of hot extrusion process , 2009 .

[45]  Sami Ekici,et al.  An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM , 2009, Expert Syst. Appl..

[46]  Dilip Kumar Pratihar,et al.  Forward and reverse mappings of the tungsten inert gas welding process using radial basis function neural networks , 2009 .

[47]  Dilip Kumar Pratihar,et al.  Design of cluster-wise optimal fuzzy logic controllers to model input-output relationships of some manufacturing processes , 2009, Int. J. Data Min. Model. Manag..

[48]  B. Sidda Reddy,et al.  Prediction of Surface Roughness in Turning Using Adaptive Neuro-Fuzzy Inference System , 2009 .

[49]  Dilip Kumar Pratihar,et al.  Forward and reverse modeling of electron beam welding process using radial basis function neural networks , 2010, Int. J. Knowl. Based Intell. Eng. Syst..

[50]  Dilip Kumar Pratihar,et al.  Forward and reverse mappings of electrical discharge machining process using adaptive network-based fuzzy inference system , 2010, Expert Syst. Appl..

[51]  Dilip Kumar Pratihar,et al.  Optimization and prediction of weldment profile in bead-on-plate welding of Al-1100 plates using electron beam , 2010 .

[52]  Jagdev Singh,et al.  An Adaptive Neuro-Fuzzy Inference System modeling for material removal rate in stationary ultrasonic drilling of sillimanite ceramic , 2010, Expert systems with applications.

[53]  Rodolfo E. Haber,et al.  A Transductive Neuro-Fuzzy Controller: Application to a Drilling Process , 2010, IEEE Transactions on Neural Networks.

[54]  Mehdi Tajdari,et al.  Surface roughness modelling in hard turning operation of AISI 4140 using CBN cutting tool , 2010 .

[55]  Mohsen Hayati,et al.  Prediction of grain size of nanocrystalline nickel coatings using adaptive neuro-fuzzy inference system , 2011 .

[56]  Indrajit Basak,et al.  Expert system to predict forging load and axial stress , 2011, Appl. Soft Comput..

[57]  Abdel Badie Sharkawy,et al.  Prediction of Surface Roughness in End Milling Process Using Intelligent Systems: A Comparative Study , 2011, Appl. Comput. Intell. Soft Comput..

[58]  A. W. Labib,et al.  Towards next generation electrochemical machining controllers: A fuzzy logic control approach to ECM , 2011, Expert Syst. Appl..

[59]  S Z Razali,et al.  Fuzzy Logic Modeling For Peripheral End Milling Process , 2011 .

[60]  Dilip Kumar Pratihar,et al.  Tuning of neural networks using particle swarm optimization to model MIG welding process , 2011, Swarm Evol. Comput..

[61]  H. Baseri,et al.  ANFIS Modeling of the Surface Roughness in Grinding Process , 2011 .

[62]  Dilip Kumar Pratihar,et al.  Modeling of input-output relationships for a plasma spray coating process using soft computing tools , 2012, Appl. Soft Comput..

[63]  Dilip Kumar Pratihar,et al.  Hierarchical adaptive neuro-fuzzy inference systems trained by evolutionary algorithms to model plasma spray coating process , 2013, J. Intell. Fuzzy Syst..