Microbial view of central nervous system autoimmunity

[1]  J. Mussini,et al.  [Immunology of multiple sclerosis]. , 1982, La semaine des hopitaux : organe fonde par l'Association d'enseignement medical des hopitaux de Paris.

[2]  R. Fujinami,et al.  Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Fujinami,et al.  Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. , 1985, Science.

[4]  E. Pomare,et al.  Carbohydrate fermentation in the human colon and its relation to acetate concentrations in venous blood. , 1985, The Journal of clinical investigation.

[5]  W. J. Cromartie,et al.  Comparison of in vivo degradation of 125I-labeled peptidoglycan-polysaccharide fragments from group A and group D streptococci , 1986, Infection and immunity.

[6]  J M Lemire,et al.  1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. , 1991, The Journal of clinical investigation.

[7]  L. Steinman,et al.  Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen , 1993, Nature.

[8]  C. Saper,et al.  The neurologic basis of fever. , 1994, The New England journal of medicine.

[9]  J. Strominger,et al.  Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein , 1995, Cell.

[10]  M. Melief,et al.  Presence of bacterial flora-derived antigen in synovial tissue macrophages and dendritic cells. , 1995, British journal of rheumatology.

[11]  P. Oksman,et al.  Muramic acid in peripheral blood leukocytes of healthy human subjects. , 1995, The Journal of infectious diseases.

[12]  P. A. Schad,et al.  Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Epitope spreading. , 1996, Current opinion in immunology.

[14]  S. Miller,et al.  Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading , 1997, Nature Medicine.

[15]  P. Calabresi,et al.  Association of human herpes virus 6 (HHV-6) with multiple sclerosis: Increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA , 1997, Nature Medicine.

[16]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Tateishi,et al.  Molecular mimicry and autoimmune disease , 1998, Science.

[18]  C. Stratton,et al.  Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis , 1999, Annals of neurology.

[19]  S. Menzo,et al.  Lack of Chlamydia infection of the central nervous system in multiple sclerosis , 2000, Annals of neurology.

[20]  P. Trillenberg,et al.  Association between clinical disease activity and Epstein–Barr virus reactivation in MS , 2000, Neurology.

[21]  S. Miller,et al.  Virus-induced autoimmunity: epitope spreading to myelin autoepitopes in Theiler's virus infection of the central nervous system. , 2001, Advances in virus research.

[22]  R. Ravid,et al.  Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis. , 2001, Brain : a journal of neurology.

[23]  G. Opdenakker,et al.  Peptidoglycan from sterile human spleen induces T-cell proliferation and inflammatory mediators in rheumatoid arthritis patients and healthy subjects. , 2001, Rheumatology.

[24]  W. Hop,et al.  Prospective study on the relationship between infections and multiple sclerosis exacerbations. , 2002, Brain : a journal of neurology.

[25]  E. Sternberg,et al.  Neuroendocrine regulation of immunity. , 2003, Annual review of immunology.

[26]  Arne Svejgaard,et al.  A functional and structural basis for TCR cross-reactivity in multiple sclerosis , 2002, Nature Immunology.

[27]  R. Ransohoff,et al.  Human cerebrospinal fluid central memory CD4+ T cells: Evidence for trafficking through choroid plexus and meninges via P-selectin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  H. Hartung,et al.  New immunopathologic insights into multiple sclerosis , 2003, Current neurology and neuroscience reports.

[29]  A. Sadovnick,et al.  Vitamin D intake and incidence of multiple sclerosis , 2004, Neurology.

[30]  V. Kuchroo,et al.  Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. , 2004, The Journal of clinical investigation.

[31]  A. Verkman,et al.  The Journal of Experimental Medicine CORRESPONDENCE , 2005 .

[32]  C. Pfueller,et al.  Lipopolysaccharide Injection Induces Relapses of Experimental Autoimmune Encephalomyelitis in Nontransgenic Mice via Bystander Activation of Autoreactive CD4+ Cells1 , 2005, The Journal of Immunology.

[33]  S. Mazmanian,et al.  An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System , 2005, Cell.

[34]  T. Michiels,et al.  The genetics of the persistent infection and demyelinating disease caused by Theiler's virus. , 2005, Annual review of microbiology.

[35]  B. Lambrecht,et al.  Proinflammatory Bacterial Peptidoglycan as a Cofactor for the Development of Central Nervous System Autoimmune Disease , 2005, The Journal of Immunology.

[36]  R. Fujinami,et al.  Molecular Mimicry, Bystander Activation, or Viral Persistence: Infections and Autoimmune Disease , 2006, Clinical Microbiology Reviews.

[37]  Nicholas W. Kin,et al.  It takes nerve to tell T and B cells what to do , 2006, Journal of leukocyte biology.

[38]  B. Becher,et al.  Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. , 2006, The Journal of clinical investigation.

[39]  James A. Thomas,et al.  Multiple toll-like receptor agonists act as potent adjuvants in the induction of autoimmunity , 2006, Journal of Neuroimmunology.

[40]  B. Melchior,et al.  CNS immune privilege: hiding in plain sight , 2006, Immunological reviews.

[41]  H. Wekerle Breaking ignorance: the case of the brain. , 2006, Current topics in microbiology and immunology.

[42]  R. Hintzen,et al.  Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates. , 2006, The American journal of pathology.

[43]  D. Fitzgerald,et al.  Cutting Edge: TLR3 Stimulation Suppresses Experimental Autoimmune Encephalomyelitis by Inducing Endogenous IFN-β1 , 2006, The Journal of Immunology.

[44]  Y. Belkaid,et al.  Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid , 2007, The Journal of experimental medicine.

[45]  R. Dziarski,et al.  Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences , 2007, Nature Reviews Microbiology.

[46]  G. Krishnamoorthy,et al.  Experimental models of spontaneous autoimmune disease in the central nervous system , 2007, Journal of Molecular Medicine.

[47]  J. Lünemann,et al.  Epstein-Barr virus and multiple sclerosis , 2007, Current neurology and neuroscience reports.

[48]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[49]  T. Yamamura,et al.  Immunopathology and Infectious Diseases NKT Cell-Dependent Amelioration of a Mouse Model of Multiple Sclerosis by Altering Gut Flora , 2010 .

[50]  Masahiro Yamamoto,et al.  ATP drives lamina propria TH17 cell differentiation , 2008, Nature.

[51]  B. Trapp,et al.  Multiple sclerosis: an immune or neurodegenerative disorder? , 2008, Annual review of neuroscience.

[52]  O. Kämpe,et al.  Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis , 2008, European journal of immunology.

[53]  G. Krishnamoorthy,et al.  Autoimmune disease : Multiple sclerosis EAE : An immunologist ’ s magic eye , 2009 .

[54]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[55]  R. Xavier,et al.  Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 , 2009, Nature.

[56]  D. Foureau,et al.  Role of Gut Commensal Microflora in the Development of Experimental Autoimmune Encephalomyelitis1 , 2009, The Journal of Immunology.

[57]  F. Nichols,et al.  Unique lipids from a common human bacterium represent a new class of Toll-like receptor 2 ligands capable of enhancing autoimmunity. , 2009, The American journal of pathology.

[58]  S. Mazmanian,et al.  Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis , 2010, Proceedings of the National Academy of Sciences.

[59]  S. Dasgupta,et al.  Central Nervous System Demyelinating Disease Protection by the Human Commensal Bacteroides fragilis Depends on Polysaccharide A Expression , 2010, The Journal of Immunology.

[60]  N. Cerf-Bensussan,et al.  The immune system and the gut microbiota: friends or foes? , 2010, Nature Reviews Immunology.

[61]  S. Mazmanian,et al.  Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota , 2010, Proceedings of the National Academy of Sciences.

[62]  D. Baker,et al.  Inflammation in neurodegenerative diseases , 2010, Immunology.

[63]  J. Ochoa-Repáraz,et al.  Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora , 2010, Gut microbes.

[64]  Chen Dong,et al.  Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. , 2010, Immunity.

[65]  Jeffrey N. Weiser,et al.  Recognition of Peptidoglycan from the Microbiota by Nod1 Enhances Systemic Innate Immunity , 2010, Nature Medicine.

[66]  D. Kasper,et al.  A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease , 2010, Mucosal Immunology.

[67]  Simon C. Potter,et al.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis , 2011, Nature.

[68]  K. Berer,et al.  Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination , 2011, Nature.

[69]  E. Hobeika,et al.  Natural Aryl Hydrocarbon Receptor Ligands Control Organogenesis of Intestinal Lymphoid Follicles , 2011, Science.

[70]  H. Sørensen,et al.  Use of penicillin and other antibiotics and risk of multiple sclerosis: a population-based case-control study. , 2012, American journal of epidemiology.

[71]  B. Scheithauer,et al.  Inflammatory cortical demyelination in early multiple sclerosis. , 2011, The New England journal of medicine.

[72]  K. Kyvik,et al.  Neuromyelitis optica (NMO) – an autoimmune disease of the central nervous system (CNS) , 2011, Acta neurologica Scandinavica.

[73]  K. Honda,et al.  Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species , 2011, Science.

[74]  K. Mills,et al.  TLR-dependent T cell activation in autoimmunity , 2011, Nature Reviews Immunology.

[75]  R. Stroud,et al.  Aquaporin 4-Specific T Cells in Neuromyelitis Optica Exhibit a Th17 Bias and Recognize Clostridium ABC Transporter , 2012, Annals of neurology.

[76]  B. Engelhardt,et al.  The anatomical and cellular basis of immune surveillance in the central nervous system , 2012, Nature Reviews Immunology.

[77]  C. Dong,et al.  Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation , 2012, Proceedings of the National Academy of Sciences.

[78]  K. Berer,et al.  Commensal gut flora and brain autoimmunity: a love or hate affair? , 2012, Acta Neuropathologica.

[79]  E. Wherry,et al.  Commensal bacteria calibrate the activation threshold of innate antiviral immunity. , 2012, Immunity.

[80]  A. Minagar,et al.  Cesarean delivery may increase the risk of multiple sclerosis , 2012, Multiple sclerosis.

[81]  H. Flint,et al.  Role of the gut microbiota in nutrition and health , 2018, British Medical Journal.

[82]  L. Campisi,et al.  Revisiting the old link between infection and autoimmune disease with commensals and T helper 17 cells , 2012, Immunologic Research.

[83]  A. Regev,et al.  Induction of pathogenic Th17 cells by inducible salt sensing kinase SGK1 , 2013, Nature.

[84]  D. Hafler,et al.  Role of “Western Diet” in Inflammatory Autoimmune Diseases , 2013, Current Allergy and Asthma Reports.

[85]  N. Yosef,et al.  Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells , 2013, Nature.

[86]  P. Heuschmann,et al.  Breastfeeding is associated with lower risk for multiple sclerosis , 2013, Multiple sclerosis.

[87]  X. Yao,et al.  Bacterial lipodipeptide, Lipid 654, is a microbiome-associated biomarker for multiple sclerosis , 2013, Clinical & translational immunology.

[88]  N. Hellings,et al.  High Fat Diet Exacerbates Neuroinflammation in an Animal Model of Multiple Sclerosis by Activation of the Renin Angiotensin System , 2013, Journal of Neuroimmune Pharmacology.

[89]  A. Rudensky,et al.  Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation , 2013, Nature.

[90]  W. Garrett,et al.  The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis , 2013, Science.

[91]  K. Berer,et al.  Remote control-triggering of brain autoimmune disease in the gut. , 2013, Current opinion in immunology.

[92]  R. Ransohoff,et al.  Development, maintenance and disruption of the blood-brain barrier , 2013, Nature Medicine.

[93]  T. Junt,et al.  Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis , 2014, Nature Medicine.

[94]  P. Vermersch,et al.  Milder multiple sclerosis course in patients with concomitant inflammatory bowel disease , 2014, Multiple sclerosis.

[95]  Mei Zheng,et al.  Cross-reactivity between human cytomegalovirus peptide 981-1003 and myelin oligodendroglia glycoprotein peptide 35-55 in experimental autoimmune encephalomyelitis in Lewis rats. , 2014, Biochemical and biophysical research communications.

[96]  R. Medzhitov,et al.  The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition , 2014, Proceedings of the National Academy of Sciences.

[97]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[98]  I. Ivanov,et al.  Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. , 2014, Immunity.