Logic and Branching Automata

In this paper we study the logical aspects of branching automata, as defined by Lodaya and Weil. We first prove that the class of languages of finite N-free posets recognized by branching automata is closed under complementation. Then we define a logic, named P-MSO as it is a extension of monadic second-order logic with Presburger arithmetic, and show that it is precisely as expressive as branching automata. As a consequence of the effectiveness of the construction of one formalism from the other, the P-MSO theory of the class of all finite N-free posets is decidable.

[1]  J. Berstel,et al.  Context-free languages , 1993, SIGA.

[2]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[3]  Silvano Dal-Zilio,et al.  XML Schema, Tree Logic and Sheaves Automata , 2003, RTA.

[4]  Pascal Weil,et al.  A Kleene Iteration for Parallelism , 1998, FSTTCS.

[5]  Thomas Schwentick,et al.  Counting in trees , 2008, Logic and Automata.

[6]  Pascal Weil,et al.  Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..

[7]  Pascal Weil,et al.  Rationality in Algebras with a Series Operation , 2002, Inf. Comput..

[8]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[9]  Jacobo Valdes Ayesta Parsing flowcharts and series-parallel graphs , 1978 .

[10]  Dietrich Kuske,et al.  Branching Automata with Costs - A Way of Reflecting Parallelism in Costs , 2003, CIAA.

[11]  Pascal Weil,et al.  Series-Parallel Posets: Algebra, Automata and Languages , 1998, STACS.

[12]  M. Schützenberger,et al.  Rational sets in commutative monoids , 1969 .

[13]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[14]  Zoltán Ésik,et al.  Automata on Series-Parallel Biposets , 2001, Developments in Language Theory.

[15]  Tayssir Touili,et al.  On Computing Reachability Sets of Process Rewrite Systems , 2005, RTA.

[16]  Nicolas Bedon Logic and Branching Automata , 2013, MFCS.

[17]  Hendrik Jan Hoogeboom,et al.  Text Languages in an Algebraic Framework , 1996, Fundam. Informaticae.

[18]  Zoltán Ésik,et al.  Free Shuffle Algebras in Language Varieties , 1996, Theor. Comput. Sci..

[19]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[20]  J. Sakarovitch Eléments de théorie des automates , 2003 .

[21]  R. McNaughton Review: C. C. Elgot, Decision Problems of Finite Automata Design and Related Arithmetics , 1969 .

[22]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[23]  Dietrich Kuske,et al.  Infinite Series-Parallel Posets: Logic and Languages , 2000, ICALP.

[24]  S. Ginsburg,et al.  BOUNDED ALGOL-LIKE LANGUAGES^) , 1964 .

[25]  A. Kasher Review: Seymour Ginsburg, Edwin H. Spanier, Semigroups, Presburger Formulas, and Languages , 1969 .

[26]  Eugene L. Lawler,et al.  The recognition of Series Parallel digraphs , 1979, SIAM J. Comput..

[27]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[28]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[29]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..