Torsional system parameter identification of turbine-generator sets
暂无分享,去创建一个
Accurate low order linear models that represent the torsional motion of turbine-generator sets are needed for determining shaft torsional responses resulting from subsynchronous resonance conditions, electric system faults and planned/unplanned switching actions in the electric network. This paper outlines the theoretical background and the methodology used for identification of linear state-space models of turbine-generator systems. These analytic mass-spring-damper models are lumped-parameter approximations, which in reality represent a continuous nonlinear system. For transient torque studies these models are adequate representations of the torsional dynamics of interest. Reduced analytic models of any particular turbine-generator unit, however, usually do not match precisely the behavior of the real machine. The paper describes an optimization method that can give a more precise representation of a particular turbine-generator based on actual plant tests and an assumed model of that unit. The parameter identification process is illustrated using plant test data from a 618 MVA turbine-generator unit.
[1] B. Yang,et al. Reduced-order shaft system models of turbogenerators , 1993 .
[2] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .