A Tutorial on Model-Assisted Estimation with Application to Forest Inventory

National forest inventories in many countries combine expensive ground plot data with remotely-sensed information to improve precision in estimators of forest parameters. A simple post-stratified estimator is often the tool of choice because it has known statistical properties, is easy to implement, and is intuitive to the many users of inventory data. Because of the increased availability of remotely-sensed data with improved spatial, temporal, and thematic resolutions, there is a need to equip the inventory community with a more diverse array of statistical estimators. Focusing on generalized regression estimators, we step the reader through seven estimators including: Horvitz Thompson, ratio, post-stratification, regression, lasso, ridge, and elastic net. Using forest inventory data from Daggett county in Utah, USA as an example, we illustrate how to construct, as well as compare the relative performance of, these estimators. Augmented by simulations, we also show how the standard variance estimator suffers from greater negative bias than the bootstrap variance estimator, especially as the size of the assisting model grows. Each estimator is made readily accessible through the new R package, mase. We conclude with guidelines in the form of a decision tree on when to use which an estimator in forest inventory applications.

[1]  F. Breidt,et al.  Model-Assisted Estimation of Forest Resources With Generalized Additive Models , 2007 .

[2]  C. Léger,et al.  A survey of bootstrap methods in finite population sampling , 2016 .

[3]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[4]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[5]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[6]  T. A. Schroeder,et al.  A Regularized Raking Estimator for Small-Area Mapping from Forest Inventory Surveys , 2019, Forests.

[7]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[8]  F. Breidt,et al.  Local polynomial regresssion estimators in survey sampling , 2000 .

[9]  Gretchen G. Moisen,et al.  Model-Assisted Survey Regression Estimation with the Lasso , 2017 .

[10]  Piermaria Corona,et al.  Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys , 2009 .

[11]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[12]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[13]  Robert Chambers,et al.  Robust case-weighting for multipurpose establishment surveys. , 1996 .

[14]  Stephen V. Stehman,et al.  Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing , 2009 .

[15]  P. Robinson,et al.  Asymptotic properties of the generalized regression estimator in probability sampling , 2016 .

[16]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[17]  MandallazDaniel,et al.  New regression estimators in forest inventories with two-phase sampling and partially exhaustive information: a design-based Monte Carlo approach with applications to small-area estimation , 2013 .

[18]  F. Breidt,et al.  Model-Assisted Estimation for Complex Surveys Using Penalized Splines , 2005 .

[19]  Lee C. Wensel,et al.  Notes and Observations: Aspect Transformation in Site Productivity Research , 1966 .

[20]  L. Fehrmann,et al.  In search of a variance estimator for systematic sampling , 2019, Scandinavian Journal of Forest Research.

[21]  Survey design asymptotics for the model-assisted penalised spline regression estimator , 2013 .

[22]  Alexander Francis Massey,et al.  Multiphase estimation procedures for forest inventories under the design-based Monte Carlo approach , 2015 .

[23]  Ronald E. McRoberts,et al.  Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data , 2010 .

[24]  Carl-Erik Särndal,et al.  Model Assisted Survey Sampling , 1997 .

[25]  Christian Ginzler,et al.  Stereo-imagery-based post-stratification by regression-tree modelling in Swiss National Forest Inventory , 2018, Remote Sensing of Environment.

[26]  C. Goga Réduction de la variance dans les sondages en présence d'information auxiliarie: Une approache non paramétrique par splines de régression , 2005 .

[27]  C. Cassel,et al.  Some results on generalized difference estimation and generalized regression estimation for finite populations , 1976 .

[28]  Kelly S. McConville,et al.  Automated selection of post‐strata using a model‐assisted regression tree estimator , 2017, Scandinavian Journal of Statistics.

[29]  Andreas Hill,et al.  New regression estimators in forest inventories with two-phase sampling and partially exhaustive information , 2013 .

[30]  Göran Ståhl,et al.  Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation , 2016, Forest Ecosystems.

[31]  E. Næsset,et al.  Methods for variable selection in LiDAR-assisted forest inventories , 2017 .

[32]  William A. Bechtold,et al.  The enhanced forest inventory and analysis program - national sampling design and estimation procedures , 2005 .

[33]  C. Särndal,et al.  Calibration Estimators in Survey Sampling , 1992 .

[34]  Barbara P. Buttenfield,et al.  Dasymetric Modeling and Uncertainty , 2014, Annals of the Association of American Geographers. Association of American Geographers.

[35]  Paul L. Patterson,et al.  FIESTA—An R estimation tool for FIA analysts , 2015 .

[36]  Annika Kangas,et al.  The efficiency of post-stratification compared to model-assisted estimation , 2017 .

[37]  National FIA plot intensification procedure report , 2014 .

[38]  Annika Kangas,et al.  Model-assisted forest inventory with parametric, semiparametric, and nonparametric models , 2016 .

[39]  F. J. Gallego Remote sensing and land cover area estimation , 2004 .

[40]  M. D. Nelson,et al.  Conterminous U.S. and Alaska Forest Type Mapping Using Forest Inventory and Analysis Data , 2008 .

[41]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[42]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[43]  Mark H. Hansen,et al.  The forest inventory and analysis sampling frame , 2005 .

[44]  Thomas Lumley,et al.  Analysis of Complex Survey Samples , 2004 .

[45]  Giorgio E. Montanari,et al.  Nonparametric Model Calibration Estimation in Survey Sampling , 2005 .

[46]  Jean D. Opsomer,et al.  Model-Assisted Survey Estimation with Modern Prediction Techniques , 2017 .

[47]  R. McRoberts,et al.  Multivariate inference for forest inventories using auxiliary airborne laser scanning data , 2017 .