Quantum nanophotonics in diamond [Invited]

The past two decades have seen great advances in developing color centers in diamond for sensing, quantum information processing, and tests of quantum foundations. Increasingly, the success of these applications as well as fundamental investigations of light–matter interaction depend on improved control of optical interactions with color centers—from better fluorescence collection to efficient and precise coupling with confined single optical modes. Wide ranging research efforts have been undertaken to address these demands through advanced nanofabrication of diamond. This review will cover recent advances in diamond nano- and microphotonic structures for efficient light collection, color center to nanocavity coupling, hybrid integration of diamond devices with other material systems, and the wide range of fabrication methods that have enabled these complex photonic diamond systems.

[1]  Oliver Benson,et al.  Numerical analysis of efficient light extraction with an elliptical solid immersion lens. , 2014, Optics letters.

[2]  Ronald Hanson,et al.  Fabrication and Characterization of Two-Dimensional Photonic Crystal Microcavities in Nanocrystalline Diamond , 2007 .

[3]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[4]  P. Ovartchaiyapong,et al.  High quality factor single-crystal diamond mechanical resonators , 2012 .

[5]  Processing of photonic crystal nanocavity for quantum information in diamond , 2010, 1012.5878.

[6]  S. Cabrini,et al.  Single digit nanofabrication by step-and-repeat nanoimprint lithography , 2012, Nanotechnology.

[7]  Seattle,et al.  Production of oriented nitrogen-vacancy color centers in synthetic diamond , 2011, 1112.5757.

[8]  Hideo Kosaka,et al.  Entangled absorption of a single photon with a single spin in diamond. , 2015, Physical review letters.

[9]  Piernicola Spinicelli,et al.  Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology , 2013 .

[10]  M. Lukin,et al.  Efficient readout of a single spin state in diamond via spin-to-charge conversion. , 2014, Physical review letters.

[11]  M. Lukin,et al.  Free-standing mechanical and photonic nanostructures in single-crystal diamond. , 2012, Nano letters.

[12]  C. Zorman,et al.  High frequency torsional-mode nanomechanical resonators enabled by very thin nanocrystalline diamond diaphragms , 2015 .

[13]  M. Shimizu,et al.  Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures , 2015 .

[14]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[15]  Fedor Jelezko,et al.  Increasing the coherence time of single electron spins in diamond by high temperature annealing , 2010 .

[16]  C. Santori,et al.  Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide , 2008, 0811.0328.

[17]  J. M. Smith,et al.  Fabrication of Ultrathin Single‐Crystal Diamond Membranes , 2008 .

[18]  F. Schmidt-Kaler,et al.  Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution , 2008 .

[19]  M. Plenio,et al.  Hybrid sensors based on colour centres in diamond and piezoactive layers , 2014, Nature Communications.

[20]  Dirk Englund,et al.  Long-lived NV− spin coherence in high-purity diamond membranes , 2012 .

[21]  R Hanson,et al.  Universal control and error correction in multi-qubit spin registers in diamond. , 2013, Nature nanotechnology.

[22]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[23]  Michal Lipson,et al.  An exercise in self control , 2007 .

[24]  M. Lukin,et al.  Efficient photon detection from color centers in a diamond optical waveguide , 2012, 1201.0674.

[25]  S. Prawer,et al.  Single Phosphorus Ion Implantation into Prefabricated Nanometre Cells of Silicon Devices for Quantum Bit Fabrication , 2002, 2002 International Microprocesses and Nanotechnology Conference, 2002. Digest of Papers..

[26]  K. Kobashi,et al.  Smooth and high-rate reactive ion etching of diamond , 2002 .

[27]  F. Jelezko,et al.  Multiple intrinsically identical single-photon emitters in the solid state , 2013, Nature Communications.

[28]  Michal Lipson,et al.  Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit , 2014, Physical Review X.

[29]  S. Shikata,et al.  Large-area high-quality single crystal diamond , 2014 .

[30]  Yuncheng Song,et al.  Waveguide-integrated single-crystalline GaP resonators on diamond. , 2014, Optics express.

[31]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[32]  Jeremy L O'Brien,et al.  Cavity enhanced spin measurement of the ground state spin of an NV center in diamond , 2009 .

[33]  S. Spillane,et al.  Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond , 2010, Nanotechnology.

[34]  Alois Renn,et al.  A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[35]  R. Kalish,et al.  Single crystal diamond photonic crystal nanocavity: Fabrication and Initial Characterization , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[36]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[37]  J. Tetienne,et al.  Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample , 2014, 1401.2795.

[38]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[39]  R. Brouri,et al.  Photon antibunching in the fluorescence of individual color centers in diamond. , 2000, Optics letters.

[40]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[41]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[42]  Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks. , 2014, Nano letters.

[43]  Patrick Maletinsky,et al.  Integrated diamond networks for quantum nanophotonics. , 2011, Nano letters.

[44]  Lee C. Bassett,et al.  Engineering shallow spins in diamond with nitrogen delta-doping , 2012 .

[45]  J. Rarity,et al.  Nanofabricated solid immersion lenses registered to single emitters in diamond , 2010, 1012.1135.

[46]  Three-dimensional localization of spins in diamond using 12C implantation , 2014, 1405.7352.

[47]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[48]  D. Englund,et al.  Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks , 2014, 1411.3639.

[49]  F. Jelezko,et al.  Creation efficiency of nitrogen-vacancy centres in diamond , 2010 .

[50]  M. Markham,et al.  Coupling of NV centers to photonic crystal nanobeams in diamond. , 2013, Nano letters.

[51]  Thomas Schenkel,et al.  Chip-scale nanofabrication of single spins and spin arrays in diamond. , 2010, Nano letters.

[52]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[53]  T. D. Madgwick,et al.  Chemical vapour deposition synthetic diamond: materials, technology and applications , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[54]  Oliver Benson,et al.  Controlled coupling of NV defect centers to plasmonic and photonic nanostructures , 2010 .

[55]  Andrew D Greentree,et al.  Towards a picosecond transform-limited nitrogen-vacancy based single photon source. , 2007, Optics express.

[56]  Kenji Watanabe,et al.  Chemical Vapor Deposition of 12C Isotopically Enriched Polycrystalline Diamond , 2012 .

[57]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[58]  Michael Siegel,et al.  Superconducting single photon detectors integrated with diamond nanophotonic circuits , 2015 .

[59]  J. Meijer,et al.  Generation of single color centers by focused nitrogen implantation , 2005 .

[60]  Joel K. W. Yang,et al.  Enhancing etch resistance of hydrogen silsesquioxane via postdevelop electron curinga) , 2006 .

[61]  Christoph Pauly,et al.  Nanoimplantation and Purcell enhancement of single NV centers in photonic crystal cavities in diamond , 2015, 1503.05666.

[62]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[63]  O. Benson,et al.  Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens , 2010, 1011.1822.

[64]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .

[65]  Alexander Zaitsev,et al.  Creation and nature of optical centres in diamond for single-photon emission—overview and critical remarks , 2011 .

[66]  Marko Lonvcar,et al.  Enhanced single-photon emission from a diamond–silver aperture , 2011, 1105.4096.

[67]  Fedor Jelezko,et al.  Nanoscale engineering and optical addressing of single spins in diamond. , 2010, Small.

[68]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[69]  P. Barclay,et al.  High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching. , 2015, Nano letters.

[70]  Edward H. Chen,et al.  Planar fabrication of arrays of ion-exfoliated single-crystal-diamond membranes with nitrogen-vacancy color centers , 2013 .

[71]  Neil B. Manson,et al.  Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces , 2014, 1401.4106.

[72]  R. Schirhagl,et al.  Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. , 2014, Annual review of physical chemistry.

[73]  F. Reinhard,et al.  Nanoengineered diamond waveguide as a robust bright platform for nanomagnetometry using shallow nitrogen vacancy centers. , 2014, Nano letters.

[74]  Simon J. Devitt,et al.  Photonic Quantum Networks formed from NV− centers , 2014, Scientific Reports.

[75]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[76]  C. Santori,et al.  Low-temperature tapered-ber probing of diamond NV ensembles coupled to GaP microcavities , 2011 .

[77]  Liam P. McGuinness,et al.  Nitrogen-vacancy centers close to surfaces , 2013 .

[78]  R. Williams,et al.  Diamond nitrogen-vacancy centers created by scanning focused helium ion beam and annealing , 2013 .

[79]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[80]  L. Childress,et al.  A Fabry-Perot Microcavity for Diamond-Based Photonics , 2015, 1508.06588.

[81]  R. Balmer,et al.  Diamond as an electronic material , 2008 .

[82]  Charles Santori,et al.  Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. , 2009, Optics express.

[83]  D. Twitchen,et al.  Colour-causing defects and their related optoelectronic transitions in single crystal CVD diamond , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[84]  C. Su,et al.  High-performance diamond-based single-photon sources for quantum communication , 2009, 0904.2267.

[85]  Erdan Gu,et al.  Fabrication and characterization of diamond micro-optics , 2006 .

[86]  Yu Tian,et al.  Effect of the Al0.3Ga0.7As interlayer thickness upon the quality of GaAs on a Ge substrate grown by metal-organic chemical vapor deposition , 2013 .

[87]  Andrei Faraon,et al.  Quantum photonic devices in single-crystal diamond , 2013 .

[88]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[89]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[90]  J. A. Morrison,et al.  The heat capacity of diamond between 12·8° and 277°k , 1958 .

[91]  Wooyoung Hong,et al.  High quality-factor optical nanocavities in bulk single-crystal diamond , 2014, Nature Communications.

[92]  Martin B. Plenio,et al.  A large-scale quantum simulator on a diamond surface at room temperature , 2012, Nature Physics.

[93]  James E. Butler,et al.  Observation of whispering gallery modes in nanocrystalline diamond microdisks , 2007 .

[94]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[95]  Hong-Quan Zhao,et al.  Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect. , 2012, Optics express.

[96]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[97]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[98]  Andrei Faraon,et al.  Microring resonator-based diamond optothermal switch: a building block for a quantum computing network , 2013, Photonics West - Optoelectronic Materials and Devices.

[99]  S. Gsell,et al.  Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. , 2014, Nano letters.

[100]  Marko Loncar,et al.  Fabrication of diamond nanowires for quantum information processing applications , 2009, 0908.0352.

[101]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[102]  Triangular nanobeam photonic cavities in single-crystal diamond , 2011, 1101.1367.

[103]  F. Jelezko,et al.  Statistical investigations on nitrogen-vacancy center creation , 2013, 1303.3730.

[104]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[105]  Jason M. Smith,et al.  Femtoliter tunable optical cavity arrays. , 2010, Optics letters.

[106]  G. Davies Charge states of the vacancy in diamond , 1977, Nature.

[107]  Fedor Jelezko,et al.  Processing quantum information in diamond , 2006 .

[108]  P. Barclay,et al.  Hybrid Nanocavity Resonant Enhancement of Color Center Emission in Diamond , 2011, 1105.5137.

[109]  M. Lončar,et al.  Design and focused ion beam fabrication of single crystal diamond nanobeam cavities , 2010, 1008.1431.

[110]  J. P. Sprengers,et al.  Waveguide superconducting single-photon detectors for integrated quantum photonic circuits , 2011, 1108.5107.

[111]  Kenneth W. Lee,et al.  Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator , 2014, Nature communications.

[112]  M. Markham,et al.  Integrated high-quality factor optical resonators in diamond. , 2013, Nano letters.

[113]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[114]  G. Solomon,et al.  Ultra-high finesse, low mode volume Fabry-Perot microcavity , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[115]  Jakob Reichel,et al.  Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. , 2013, Physical review letters.

[116]  François Ladouceur,et al.  Diamond waveguides fabricated by reactive ion etching. , 2008, Optics express.

[117]  Matthias Schreck,et al.  A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers , 2004 .

[118]  M. D. Lukin,et al.  Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic , 2016, Science.

[119]  Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information , 2015, 1510.05047.

[120]  Dirk Englund,et al.  Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. , 2014, Nano letters.

[121]  David O. Bracher,et al.  Bottom‐up engineering of diamond micro‐ and nano‐structures , 2013, 1309.0294.

[122]  D. Awschalom,et al.  Patterned Formation of Highly Coherent Nitrogen-Vacancy Centers Using a Focused Electron Irradiation Technique. , 2015, Nano letters.

[123]  Ronald L. Walsworth,et al.  Nanoscale magnetometry with NV centers in diamond , 2013 .

[124]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[125]  Mainwood,et al.  Nitrogen and nitrogen-vacancy complexes and their formation in diamond. , 1994, Physical review. B, Condensed matter.

[126]  M. Ganzhorn,et al.  Photonic nano-structures on (111)-oriented diamond , 2014, 1403.6063.

[127]  Fabrication of thin diamond membranes for photonic applications , 2012, 1210.0125.

[128]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[129]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[130]  M. Schreck,et al.  Mosaicity reduction during growth of heteroepitaxial diamond films on iridium buffer layers: Experimental results and numerical simulations , 2002 .

[131]  D. Hunger,et al.  Laser micro-fabrication of concave, low-roughness features in silica , 2011, 1109.5047.

[132]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[133]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[134]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[135]  Bálint Aradi,et al.  Calculation ofthe transitions and migration of nitrogen and vacancy related defects,with implications on the formation of NV centers in bulk diamond , 2013, 1311.6598.

[136]  C. Santori,et al.  Coupling of nitrogen-vacancy centers to photonic crystal resonators in monocrystalline diamond , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[137]  M. Lukin,et al.  Enhanced solid-state multispin metrology using dynamical decoupling , 2012, 1201.5686.

[138]  Bernd Köhler,et al.  Generation and detection of fluorescent color centers in diamond with submicron resolution , 1999 .

[139]  W. Lukosz,et al.  Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power , 1977 .

[140]  Dirk Englund,et al.  Three megahertz photon collection rate from an NV center with millisecond spin coherence , 2014, 1409.3068.

[141]  Richard M. Osgood,et al.  Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy , 2013 .

[142]  Marko Lonvcar,et al.  Single-color centers implanted in diamond nanostructures , 2010, 1009.4224.

[143]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[144]  G. Gantenbein,et al.  Experimental results and numerical simulations of a high power 140 GHz gyrotron , 1994 .

[145]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[146]  P Hemmer,et al.  Stark shift control of single optical centers in diamond. , 2006, Physical Review Letters.

[147]  I. Gerhardt,et al.  Monolithic diamond optics for single photon detection. , 2010, Applied physics letters.

[148]  M.M.R. Williams,et al.  The stopping and ranges of ions in matter , 1978 .

[149]  Mats Larsson,et al.  Composite optical microcavity of diamond nanopillar and silica microsphere. , 2009, Nano letters.

[150]  Igor Aharonovich,et al.  Subtractive 3D Printing of Optically Active Diamond Structures , 2014, Scientific reports.

[151]  Hoi Wai Choi,et al.  Fabrication of natural diamond microlenses by plasma etching , 2005 .

[152]  Christian Eggeling,et al.  Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. , 2009, Nano letters.

[153]  Raymond G. Beausoleil,et al.  Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond , 2009 .

[154]  J. D. Thompson,et al.  Nanophotonic quantum phase switch with a single atom , 2014, Nature.

[155]  Richard J. Black,et al.  Tapered single-mode fibres and devices. I. Adiabaticity criteria , 1991 .

[156]  Paul E. Barclay,et al.  Single crystal diamond nanobeam waveguide optomechanics , 2015, 1502.01788.

[157]  J. Rarity,et al.  Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses , 2010, 1006.2093.

[158]  E. A. Curtis,et al.  Microfabricated high-finesse optical cavity with open access and small volume , 2005, quant-ph/0506234.

[159]  T. Ohshima,et al.  Homoepitaxial diamond film growth: High purity, high crystalline quality, isotopic enrichment, and single color center formation , 2015 .

[160]  R P Mildren,et al.  Highly efficient diamond Raman laser. , 2009, Optics letters.

[161]  M. Markham,et al.  Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing , 2011 .

[162]  T. Ohshima,et al.  Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation , 2014 .

[163]  Hidefumi Akiyama,et al.  Improved High Collection Efficiency in Fluorescence Microscopy with a Weierstrass-Sphere Solid Immersion Lens , 2002 .

[164]  A. Hamed Majedi,et al.  Superconducting nanowire single photon detector on diamond , 2014, 1401.4490.

[165]  James E. Butler,et al.  Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition , 2003 .

[166]  A. T. Collins,et al.  The annealing of radiation damage in type Ia diamond , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[167]  Dirk Englund,et al.  Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide , 2014, Nature Physics.

[168]  Igor Aharonovich,et al.  Homoepitaxial Growth of Single Crystal Diamond Membranes for Quantum Information Processing , 2011, Advanced materials.

[169]  H. Weinfurter,et al.  Single photon emission from SiV centres in diamond produced by ion implantation , 2006 .

[170]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[171]  Edward H. Chen,et al.  Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. , 2014, Nano letters.

[172]  Fabrication and characterization of single crystalline diamond nanopillars with NV-centers , 2015 .

[173]  V. Konov,et al.  Fabrication of diamond microstub photoemitters with strong photoluminescence of SiV color centers: bottom-up approach , 2015 .

[174]  Yurii A. Vlasov,et al.  Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides , 2010, 1001.1533.

[175]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[176]  I. Bulu,et al.  Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings , 2013, 1308.0522.

[177]  Oliver Benson,et al.  Assembly of hybrid photonic architectures from nanophotonic constituents , 2011, Nature.

[178]  D. F. Ogletree,et al.  Local formation of nitrogen-vacancy centers in diamond by swift heavy ions , 2014, 1410.5797.

[179]  T. Kaldewey,et al.  Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond , 2014, 1408.4117.

[180]  Christoph Pauly,et al.  Narrow-band single photon emission at room temperature based on a single Nitrogen-vacancy center coupled to an all-fiber-cavity , 2014, 1407.5825.

[181]  Dirk Englund,et al.  Coherent spin control of a nanocavity-enhanced qubit in diamond , 2014, Nature Communications.

[182]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[183]  Jie Deng,et al.  Enhanced resonance tuning of photonic crystal nanocavities by integration of optimized near-field multitip nanoprobes , 2011 .

[184]  Noel H. Wan,et al.  Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber , 2015, Light: Science & Applications.

[185]  I. Walmsley,et al.  Creating diamond color centers for quantum optical applications , 2007, 0710.5379.

[186]  Raymond G. Beausoleil,et al.  Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing , 2008, 0812.3905.

[187]  David O. Bracher,et al.  Deterministic coupling of delta-doped NV centers to a nanobeam photonic crystal cavity , 2014, 1411.0725.

[188]  Edward H. Chen,et al.  Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[189]  C. Degen,et al.  Facile Fabrication of Single‐Crystal‐Diamond Nanostructures with Ultrahigh Aspect Ratio , 2013, Advanced materials.

[190]  Yiwen Chu,et al.  Quantum Entanglement Between an Optical Photon and a Solid-State Spin Qubit , 2011 .

[191]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[192]  D. N. Jamieson,et al.  Characterization of three-dimensional microstructures in single-crystal diamond , 2006, 1609.00289.

[193]  D. Awschalom,et al.  Engineered micro- and nanoscale diamonds as mobile probes for high-resolution sensing in fluid. , 2014, Nano letters.

[194]  D. Clarke,et al.  Fabrication of thin, luminescent, single-crystal diamond membranes , 2011, 1108.0738.

[195]  P. Barclay,et al.  Low-temperature tapered-fiber probing of diamond nitrogen-vacancy ensembles coupled to GaP microcavities , 2011, 1102.5372.

[196]  Igor Aharonovich,et al.  Diamond Nanophotonics , 2014, 1408.5451.

[197]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[198]  Dirk Englund,et al.  Nanofabrication on unconventional substrates using transferred hard masks , 2015, Scientific Reports.

[199]  Plasmonic resonators for enhanced diamond NV-center single photon sources. , 2011, Optics express.

[200]  J. Wrachtrup,et al.  Implantation of labelled single nitrogen vacancy centers in diamond using N15 , 2005, cond-mat/0511722.

[201]  M. Lukin,et al.  Indistinguishable photons from separated silicon-vacancy centers in diamond. , 2014, Physical review letters.

[202]  Stable fiber-based Fabry-Pérot cavity , 2006, physics/0606231.

[203]  A. Reiserer,et al.  Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond. , 2015, Faraday discussions.

[204]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[205]  M. Schreck,et al.  Diamond nucleation on iridium buffer layers and subsequent textured growth: A route for the realization of single-crystal diamond films , 2001 .

[206]  M. Toth,et al.  Maskless milling of diamond by a focused oxygen ion beam , 2015, Scientific Reports.

[207]  Hannes Bernien,et al.  Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields , 2015, Nature Photonics.