The Utilization of Naive Bayes and C.45 in Predicting The Timeliness of Students’ Graduation

An assessment of the success of a college is if the student's graduation rate is on time and high every year. The timeliness of students' graduation can be influenced by several factors. This study aims to determine the profile of the students who graduated both on time and not on time given a certain graduation predicate set by the institution and to know the factors influencing students’ gradution. The model used in this study using the NBC to determine the graduation pattern and the Decision tree to determine the influencing factors. In calculating the NBC algorithm using rapidminer, it was found that the profiles of students who graduated on time and late with the predicate of less satisfactory, satisfactory, very satisfactory and cumlaude. In the Desicion Tree calculation, the highest gain values are obtained in the IPK3, IPS1 and IPK2 attributes. This research needs to be developed further by increasing the number of attributes and data, and it is necessary to make a system to determine the accuracy of students’ graduation from the patterns that have been produced so that it can help universities to increase the level of students’ graduation every year.

[1]  Indah Puji Astuti Prediksi Ketepatan Waktu Kelulusan Dengan Algoritma Data Mining C4.5 , 2017 .

[2]  Senol Zafer Erdogan,et al.  A DATA MINING APPLICATION IN A STUDENT DATABASE , 2005 .

[3]  Setyawan,et al.  Klasifikasi Masa Studi Mahasiswa Fakultas Komunikasi dan Informatika , 2014 .

[4]  Andri Andri,et al.  Implementasi Teknik Data Mining Untuk Memprediksi Tingkat Kelulusan Mahasiswa Pada Universitas Bina Darma Palembang , 2013 .

[5]  Nurliana Nasution,et al.  Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naïve Bayes (Studi Kasus: Fasilkom Unilak) , 2015 .

[6]  Fatmawati Zahroh PENGARUH GENDER TERHADAP MOTIVASI MEMILIH SEKOLAH DAN PRESTASI BELAJAR , 2016 .

[7]  Suprapedi Suprapedi,et al.  PREDIKSI KELULUSAN MAHASISWA TEPAT WAKTU BERDASARKAN USIA, JENIS KELAMIN, DAN INDEKS PRESTASI MENGGUNAKAN ALGORITMA DECISION TREE , 2017 .

[8]  Ion Lungu,et al.  Research Issues Concerning Algorithms Used For Optimizing The Data Mining Process , 2010 .

[9]  H. Purnomo The Use of Naive Bayes for Broiler Digestive Tract Disease Detection , 2019, Journal of Information Technology and Computer Engineering.

[10]  Ernesto Pathros Ibarra Garcia,et al.  Model Prediction of Academic Performance for First Year Students , 2011, 2011 10th Mexican International Conference on Artificial Intelligence.

[11]  Moechammad Sarosa,et al.  Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier , 2013 .

[12]  Kusrini,et al.  Algoritma Data Mining , 2009 .

[13]  Triyanna Widiyaningtyas,et al.  Illiteracy Classification Using K Means-Naïve Bayes Algorithm , 2018 .