Null Controllability of the Structurally Damped Wave Equation with Moving Control

We investigate the internal controllability of the wave equation with structural damping on the one-dimensional torus. We assume that the control is acting on a moving point or on a moving small interval with a constant velocity. We prove that the null controllability holds in some suitable Sobolev space and after a fixed positive time independent of the initial conditions.

[1]  D. L. Russell,et al.  Exact controllability theorems for linear parabolic equations in one space dimension , 1971 .

[2]  Qi Zhou,et al.  Exact internal controllability of Maxwell’s equations , 1997 .

[3]  A. Khapalov,et al.  Controllability of the wave equation with moving point control , 1995 .

[4]  Günter Leugering,et al.  Boundary control of a vibrating plate with internal damping , 1989 .

[5]  Alexander Khapalov,et al.  Mobile Point Controls Versus Locally Distributed Ones for the Controllability of the Semilinear Parabolic Equation , 2001, SIAM J. Control. Optim..

[6]  Carlos Castro,et al.  Exact controllability of the 1-d wave equation from a moving interior point , 2013 .

[7]  Paul Malliavin,et al.  On fourier transforms of measures with compact support , 1962 .

[8]  Pierre Rouchon,et al.  ON THE CONTROLLABILITY OF A WAVE EQUATION WITH STRUCTURAL DAMPING , 2005 .

[9]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[10]  J. Goldstein Semigroups of Linear Operators and Applications , 1985 .

[11]  A. E. Ingham,et al.  ENTIRE FUNCTIONS AND MÜNTZ-SZÁSZ TYPE APPROXIMATION , 2010 .

[12]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[13]  O. Glass Controllability and asymptotic stabilization of the Camassa–Holm equation , 2008 .

[14]  Carlos Castro,et al.  Unique Continuation and Control for the Heat Equation from an Oscillating Lower Dimensional Manifold , 2004, SIAM J. Control. Optim..

[15]  W. K. Hayman,et al.  LECTURES ON ENTIRE FUNCTIONS (Translations of Mathematical Monographs 150) , 1998 .

[16]  T. Gamelin,et al.  The Logarithmic Integral , 2001 .

[17]  Lionel Rosier,et al.  Control and stabilization of the Korteweg-de Vries equation: recent progresses , 2009, J. Syst. Sci. Complex..

[18]  Enrique Zuazua,et al.  Null‐Controllability of a System of Linear Thermoelasticity , 1998 .

[19]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[20]  Yurii Lyubarskii,et al.  Lectures on entire functions , 1996 .

[21]  Olivier Glass,et al.  A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit , 2010 .

[22]  J. Solà-Morales,et al.  Analysis of a viscoelastic spring-mass model ✩ , 2004 .

[23]  Günter Leugering,et al.  Optimal controllability in viscoelasticity of rate type , 1986 .

[24]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[25]  J. L. Lions 1. Pointwise Control for Distributed Systems , 1992 .

[26]  Lionel Rosier,et al.  Unique continuation property and control for the Benjamin–Bona–Mahony equation on a periodic domain , 2013 .

[27]  下村 明洋 書評 T. Cazenave and A. Haraux: An Introduction to Semilinear Evolution Equations (Revised Edition) (Oxford Lecture Ser. Math. Appl., 13) , 2004 .

[28]  Sorin Micu,et al.  On the Controllability of the Linearized Benjamin--Bona--Mahony Equation , 2000, SIAM J. Control. Optim..

[29]  Irena Lasiecka,et al.  Exact null controllability of structurally damped and thermo-elastic parabolic models , 1998 .