<jats:p>We analyze generic sequences for which the geometrically linear energy <jats:disp-formula><jats:alternatives><jats:tex-math>$$\begin{aligned} E_\eta (u,\chi )\,{:}{=} \,\eta ^{-\frac{2}{3}}\int _{B_{1}\left( 0\right) } \left| e(u)- \sum _{i=1}^3 \chi _ie_i\right| ^2 \, \mathrm {d}x+\eta ^\frac{1}{3} \sum _{i=1}^3 |D\chi _i|({B_{1}\left( 0\right) }) \end{aligned}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mtable>
<mml:mtr>
<mml:mtd>
<mml:mrow>
<mml:msub>
<mml:mi>E</mml:mi>
<mml:mi>η</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>u</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>χ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mspace />
<mml:mo>:</mml:mo>
<mml:mo>=</mml:mo>
<mml:mspace />
<mml:msup>
<mml:mi>η</mml:mi>
<mml:mrow>
<mml:mo>-</mml:mo>
<mml:mfrac>
<mml:mn>2</mml:mn>
<mml:mn>3</mml:mn>
</mml:mfrac>
</mml:mrow>
</mml:msup>
<mml:msub>
<mml:mo>∫</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mn>1</mml:mn>
</mml:msub>
<mml:mfenced>
<mml:mn>0</mml:mn>
</mml:mfenced>
</mml:mrow>
</mml:msub>
<mml:msup>
<mml:mfenced>
<mml:mi>e</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>u</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>-</mml:mo>
<mml:munderover>
<mml:mo>∑</mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mn>3</mml:mn>
</mml:munderover>
<mml:msub>
<mml:mi>χ</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:msub>
<mml:mi>e</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
</mml:mfenced>
<mml:mn>2</mml:mn>
</mml:msup>
<mml:mspace />
<mml:mi>d</mml:mi>
<mml:mi>x</mml:mi>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mi>η</mml:mi>
<mml:mfrac>
<mml:mn>1</mml:mn>
<mml:mn>3</mml:mn>
</mml:mfrac>
</mml:msup>
<mml:munderover>
<mml:mo>∑</mml:mo>
<mml:mrow>
<mml:mi>i</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mn>3</mml:mn>
</mml:munderover>
<mml:mrow>
<mml:mo>|</mml:mo>
<mml:mi>D</mml:mi>
<mml:msub>
<mml:mi>χ</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo>|</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mn>1</mml:mn>
</mml:msub>
<mml:mfenced>
<mml:mn>0</mml:mn>
</mml:mfenced>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:mtd>
</mml:mtr>
</mml:mtable>
</mml:mrow>
</mml:math></jats:alternatives></jats:disp-formula>remains bounded in the limit <jats:inline-formula><jats:alternatives><jats:tex-math>$$\eta \rightarrow 0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>η</mml:mi>
<mml:mo>→</mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>. Here <jats:inline-formula><jats:alternatives><jats:tex-math>$$ e(u) \,{:}{=}\,1/2(Du + Du^T)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>e</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>u</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mspace />
<mml:mo>:</mml:mo>
<mml:mo>=</mml:mo>
<mml:mspace />
<mml:mn>1</mml:mn>
<mml:mo>/</mml:mo>
<mml:mn>2</mml:mn>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>D</mml:mi>
<mml:mi>u</mml:mi>
<mml:mo>+</mml:mo>
<mml:mi>D</mml:mi>
<mml:msup>
<mml:mi>u</mml:mi>
<mml:mi>T</mml:mi>
</mml:msup>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> is the (linearized) strain of the displacement <jats:italic>u</jats:italic>, the strains <jats:inline-formula><jats:alternatives><jats:tex-math>$$e_i$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>e</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> correspond to the martensite strains of a shape memory alloy undergoing cubic-to-tetragonal transformations and the partition into phases is given by <jats:inline-formula><jats:alternatives><jats:tex-math>$$\chi _i:{B_{1}\left( 0\right) } \rightarrow \{0,1\}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>χ</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo>:</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>B</mml:mi>
<mml:mn>1</mml:mn>
</mml:msub>
<mml:mfenced>
<mml:mn>0</mml:mn>
</mml:mfenced>
</mml:mrow>
<mml:mo>→</mml:mo>
<mml:mrow>
<mml:mo>{</mml:mo>
<mml:mn>0</mml:mn>
<mml:mo>,</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>}</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>. In this regime it is known that in addition to simple laminates, branched structures are also possible, which if austenite was present would enable the alloy to form habit planes. In an ansatz-free manner we prove that the alignment of macroscopic interfaces between martensite twins is as predicted by well-known rank-one conditions. Our proof proceeds via the non-convex, non-discrete-valued differential inclusion <jats:disp-formula><jats:alternatives><jats:tex-math>$$\begin{aligned} e(u) \in \bigcup _{1\le i\ne j\le 3} {\text {conv}} \{e_i,e_j\}, \end{aligned}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mtable>
[1]
A. Brøndsted.
An Introduction to Convex Polytopes
,
1982
.
[2]
H. Brezis,et al.
Degree theory and BMO; part I: Compact manifolds without boundaries
,
1995
.
[3]
E. Davoli,et al.
Two-well rigidity and multidimensional sharp-interface limits for solid–solid phase transitions
,
2018,
Calculus of Variations and Partial Differential Equations.
[4]
G. Friesecke,et al.
A theorem on geometric rigidity and the derivation of nonlinear plate theory from three‐dimensional elasticity
,
2002
.
[5]
A. L. Roitburd,et al.
Martensitic Transformation as a Typical Phase Transformation in Solids
,
1978
.
[6]
Vladimir Sverak,et al.
Convex integration with constraints and applications to phase transitions and partial differential equations
,
1999
.
[7]
A. G. Khachaturi︠a︡n.
Theory of structural transformations in solids
,
1983
.
[8]
B. Kirchheim.
Lipschitz minimizers of the 3-well problem having gradients of bounded variation
,
1998
.
[9]
Sergio Conti,et al.
Multiwell Rigidity in Nonlinear Elasticity
,
2008,
SIAM J. Math. Anal..
[10]
Kaushik Bhattacharya,et al.
Comparison of the geometrically nonlinear and linear theories of martensitic transformation
,
1993
.
[11]
J. Ball,et al.
Fine phase mixtures as minimizers of energy
,
1987
.
[12]
L. Ambrosio,et al.
Functions of Bounded Variation and Free Discontinuity Problems
,
2000
.
[13]
Angkana Rüland.
A Rigidity Result for a Reduced Model of a Cubic-to-Orthorhombic Phase Transition in the Geometrically Linear Theory of Elasticity
,
2016
.
[14]
Robert V. Kohn,et al.
Elastic Energy Minimization and the Recoverable Strains of Polycrystalline Shape‐Memory Materials
,
1997
.
[15]
AN L TWO WELL LIOUVILLE THEOREM
,
2006
.
[16]
Anja Schlömerkemper,et al.
Non-Laminate Microstructures in Monoclinic-I Martensite
,
2012,
1201.6679.
[17]
J. Mackenzie,et al.
The crystallography of martensite transformations II
,
1954
.
[18]
Sergio Conti,et al.
Branched microstructures: scaling and asymptotic self-similarity
,
2000
.
[19]
A. Lorent.
A TWO WELL LIOUVILLE THEOREM
,
2005
.
[20]
L. Evans.
Measure theory and fine properties of functions
,
1992
.
[21]
Robert V. Kohn,et al.
The relaxation of a double-well energy
,
1991
.
[22]
B. Kirchheim,et al.
Existence of Lipschitz minimizers for the three-well problem in solid-solid phase transitions
,
2007
.
[23]
A. Khachaturyan,et al.
Theory of Macroscopic Periodicity for a Phase Transition in the Solid State
,
1969
.
[24]
A. Lorent.
An L p two well Liouville Theorem
,
2006
.
[25]
F. Otto,et al.
A rigidity result for a perturbation of the geometrically linear three‐well problem
,
2009
.
[26]
R. Kohn,et al.
Branching of twins near an austenite—twinned-martensite interface
,
1992
.
[27]
J. Christian,et al.
Experiments on the martensitic transformation in single crystals of indium-thallium alloys
,
1954
.
[28]
S. Müller.
Variational models for microstructure and phase transitions
,
1999
.
[29]
R. D. James,et al.
Proposed experimental tests of a theory of fine microstructure and the two-well problem
,
1992,
Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[30]
M. Wechsler.
O the Theory of the Formation of Martensite.
,
1953
.
[31]
F. Otto,et al.
Nucleation Barriers for the Cubic‐to‐Tetragonal Phase Transformation
,
2013
.
[32]
M. Wuttig,et al.
Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width
,
2006,
Nature materials.
[33]
Soon-Mo Jung.
Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis
,
2011
.
[34]
S. Conti,et al.
Rigidity and gamma convergence for solid‐solid phase transitions with SO(2) invariance
,
2006
.
[35]
S. Müller,et al.
The influence of surface energy on stress-free microstructures in shape memory alloys
,
1995
.
[36]
B. Schmidt.
Linear Γ-limits of multiwell energies in nonlinear elasticity theory
,
2008
.
[37]
Felix Otto,et al.
A quantitative rigidity result for the cubic-to-tetragonal phase transition in the geometrically linear theory with interfacial energy
,
2012,
Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[38]
Angkana Rüland.
The Cubic-to-Orthorhombic Phase Transition: Rigidity and Non-Rigidity Properties in the Linear Theory of Elasticity
,
2016
.
[39]
Stefan Müller,et al.
Calculus of Variations and Geometric Evolution Problems
,
1999
.
[40]
Robert V. Kohn,et al.
Surface energy and microstructure in coherent phase transitions
,
1994
.
[41]
R. Jerrard,et al.
On multiwell Liouville theorems in higher dimension
,
2008,
0802.0850.
[42]
D. Sarason.
Functions of vanishing mean oscillation
,
1975
.
[43]
J. Mackenzie,et al.
The crystallography of martensite transformations III. Face-centred cubic to body-centred tetragonal transformations
,
1954
.