A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible uid

[1]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[2]  Ekkehard Ramm,et al.  Accelerated iterative substructuring schemes for instationary fluid-structure interaction , 2001 .

[3]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[4]  Hermann G. Matthies,et al.  Strong Coupling Methods , 2003 .

[5]  Serge Piperno,et al.  Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations , 1997 .

[6]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[7]  Klaus-Jürgen Bathe,et al.  On finite element analysis of fluid flows fully coupled with structural interactions , 1999 .

[8]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[9]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[10]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[11]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[12]  H. Matthies,et al.  Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction , 2002 .

[13]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[14]  H. Matthies,et al.  Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction , 2003 .

[15]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[16]  Gilles Fourestey,et al.  Heterogeneous domain decomposition methods for fluid-structure interaction problems , 2007 .

[17]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[18]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[19]  Miguel Angel Fernández,et al.  An exact Block-Newton algorithm for the solution of implicit time discretized coupled systems involved in fluid-structure interaction problems , 2003 .

[20]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[21]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[22]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[23]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[24]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[25]  F P T Baaijens,et al.  A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. , 2003, Journal of biomechanics.

[26]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .

[27]  Mikko Lyly,et al.  FLUID-STRUCTURE INTERACTION BOUNDARY CONDITIONS BY ARTIFICIAL COMPRESSIBILITY , 2001 .

[28]  Carlos A. Felippa,et al.  Finite element analysis of shock-induced hull cavitation , 1984 .

[29]  C. Farhat,et al.  Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application , 1995 .

[30]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[31]  Xavier Vasseur,et al.  A dynamic preconditioner for Newton-Krylov algorithms. Application to fluid-structure interaction , 2004 .

[32]  van Eh Harald Brummelen,et al.  An interface Newton–Krylov solver for fluid–structure interaction , 2005 .

[33]  Jean-Luc Guermond,et al.  International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .