On Complexity of Persian Orthography: L-Systems Approach

To understand how the Persian language developed over time, we uncover the dynamics of complexity of Persian orthography. We represent Persian words by L-systems and calculate complexity measures of these generative systems. The complexity measures include degrees of nonconstructability, generative complexity, and morphological richness; the measures are augmented with time series analysis. The measures are used in a comparative analysis of four representative poets: Rudaki (858–940 AD), Rumi (1207–1273), Sohrab (1928–1980), and Yas (1982–present). We find that irregularity of the Persian language, as characterized by the complexity measures of L-systems representing the words, increases over temporal evolution of the language.

[1]  Susan Stepney,et al.  Growing Music: Musical Interpretations of L-Systems , 2005, EvoWorkshops.

[2]  Alvy Ray Smith,et al.  Plants, fractals, and formal languages , 1984, SIGGRAPH.

[3]  Yunhe Pan,et al.  A Computational Approach to Digital Chinese Painting and Calligraphy , 2009 .

[4]  Yoshiaki Takai,et al.  Free-form shape modeling by 3D cellular automata , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[5]  Klaus Sutner,et al.  Linear cellular automata and the garden-of-eden , 1989 .

[6]  A. Lindenmayer Developmental systems without cellular interactions, their languages and grammars. , 1971, Journal of theoretical biology.

[7]  E. Geva,et al.  Orthographic and Cognitive Factors in the Concurrent Development of Basic ReadingSkills in English and Persian , 1999 .

[8]  Kaveh Bazargan Harandi Abstract information visualization in interactive 3D virtual environments: conceptualization and usability evaluation , 2011 .

[9]  Haitao Liu,et al.  Approaching human language with complex networks. , 2014, Physics of life reviews.

[10]  Andrew Adamatzky,et al.  On Diversity of Configurations Generated by Excitable Cellular Automata with Dynamical Excitation Intervals , 2012, 1209.2668.

[11]  Genaro Juárez Martínez,et al.  On generative morphological diversity of elementary cellular automata , 2010, Kybernetes.

[12]  Mahmoud Keshavarz,et al.  Interactive Persepolis : A Study on Role of Interaction Design in Cultural Heritage Tourism , 2009 .

[13]  Mohammad Mahdi Dehshibi,et al.  Ad-hoc Ma'qeli Script Generation Using Block Cellular Automata , 2012, J. Cell. Autom..

[14]  Mahinnaz Mirdehghan,et al.  Persian, Urdu, and Pashto: A comparative orthographic analysis , 2010 .

[15]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[16]  Mohammad Mahdi Dehshibi,et al.  On Growing Persian Words with L-Systems: Visual Modeling of Neyname , 2015, Int. J. Image Graph..

[17]  Shigeru Kondo,et al.  Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation , 2010, Science.

[18]  Tommaso Toffoli,et al.  Computation and Construction Universality of Reversible Cellular Automata , 1977, J. Comput. Syst. Sci..

[19]  Azam Bastanfard,et al.  Square Kufic Pattern Formation by Asynchronous Cellular Automata , 2010, ACRI.

[20]  J. Myhill The converse of Moore’s Garden-of-Eden theorem , 1963 .

[21]  M. Roussou THE COMPONENTS OF ENGAGEMENT IN VIRTUAL HERITAGE ENVIRONMENTS , 2007 .

[22]  Georges Jean Writing: The Story of Alphabets and Scripts , 1992 .

[23]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[24]  Daniela Oreni,et al.  Three-Dimensional Virtual Models for Better Comprehension of Architectural Heritage Construction Techniques and Its Maintenance over Time , 2012, EuroMed.

[25]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[26]  A. Adamatzky,et al.  Classifying elementary cellular automata using compressibility, diversity and sensitivity measures , 2014 .

[27]  Przemyslaw Prusinkiewicz,et al.  Graphical applications of L-systems , 1986 .

[28]  Saeed Vaseghi,et al.  Power Spectrum Estimation , 1995 .

[29]  Mohammad Mahdi Dehshibi,et al.  Clustering Persian viseme using phoneme subspace for developing visual speech application , 2013, Multimedia Tools and Applications.

[30]  R. Voss,et al.  ’’1/f noise’’ in music: Music from 1/f noise , 1978 .

[31]  Gonzalo Navarro,et al.  A guided tour to approximate string matching , 2001, CSUR.

[32]  Mohammad Mahdi Dehshibi,et al.  Pattern Formation Using Cellular Automata and L-Systems: A Case Study in Producing Islamic Patterns , 2014 .

[33]  Mangho Ahuja,et al.  Tessellations in Islamic Calligraphy , 2017 .

[34]  Mohammad Mahdi Dehshibi,et al.  Pattern formation using L-systems: A case study in forming Neyname’s words , 2015 .

[35]  Ramesh Krishnamurti,et al.  ARABIC CALLIGRAPHY: A COMPUTATIONAL EXPLORATION , 2001 .

[36]  Przemyslaw Prusinkiewicz Score Generation with L-Systems , 1986, ICMC.

[37]  Mohammad Mahdi Dehshibi,et al.  Persian Viseme Classification Using Interlaced Derivative Patterns and Support Vector Machine , 2014 .

[38]  Mohammad Mahdi Dehshibi,et al.  Kernel-based Persian viseme clustering , 2013, 13th International Conference on Hybrid Intelligent Systems (HIS 2013).