Monaural Sound Localization Using Spectral Cues

This chapter begins by summarizing the acoustic basis of monaural sound localization. Measures performed in the ear canal of human listeners reveal a rich complexity of spectral information that changes in relation to the location of auditory stimuli. Neurophysiological representations of these spectral cues are followed from generalized population responses of the auditory nerve to specialized pathways of the dorsal cochlear nucleus and inferior colliculus. The perceptual basis of monaural sound localization is revealed by reviewing a century of research with monaural listeners, ear plugging procedures, and spectral manipulations. Animal studies explore the neuroanatomical basis of monaural spectral processing and address the potential species specificity of the specialized processes that dictate monaural sound localization in humans.

[1]  R. Batra,et al.  Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: effects of changing frequency. , 1987, Journal of neurophysiology.

[2]  D. W. Batteau,et al.  The role of the pinna in human localization , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  I. Nelken,et al.  Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. , 1994, Journal of neurophysiology.

[4]  Physiological mechanisms of masking and intensity discrimination , 1989 .

[5]  R A Butler,et al.  Spectral cues provided by the pinna for monaural localization in the horizontal plane , 1981, Perception & psychophysics.

[6]  D. P. Phillips,et al.  Spatial receptive fields in the cat inferior colliculus , 1983, Hearing Research.

[7]  D. Irvine The Auditory Brainstem , 1986, Progress in Sensory Physiology.

[8]  R. Levine,et al.  CNS somatosensory-auditory interactions elicit or modulate tinnitus , 2003, Experimental Brain Research.

[9]  E. M. Granger,et al.  Role of acoustic striae in hearing: Mechanism for enhancement of sound detection in cats , 1994, Hearing Research.

[10]  A. Mills On the minimum audible angle , 1958 .

[11]  Russell R. Pfeiffer,et al.  Classification of response patterns of spike discharges for units in the cochlear nucleus: Tone-burst stimulation , 2004, Experimental Brain Research.

[12]  J. Blauert Spatial Hearing: The Psychophysics of Human Sound Localization , 1983 .

[13]  Warner Fite,et al.  Contributions from the Psychological Laboratory of the University of Chicago: Further observations on the monaural localization of sound. , 1901 .

[14]  P. Fuchs,et al.  The Synaptic Physiology of Cochlear Hair Cells , 2002, Audiology and Neurotology.

[15]  E. B. Newman,et al.  The localization of actual sources of sound. , 1936 .

[16]  F. Wightman,et al.  The dominant role of low-frequency interaural time differences in sound localization. , 1992, The Journal of the Acoustical Society of America.

[17]  Ira J. Hirsh,et al.  The Relation between Localization and Intelligibility , 1950 .

[18]  F. A. Firestone,et al.  The Binaural Localization of Pure Tones , 1930 .

[19]  W. D. Neff,et al.  Auditory localization: role of auditory pathways in brain stem of the cat. , 1975, Journal of neurophysiology.

[20]  Eric D Young,et al.  Spike-Timing Codes Enhance the Representation of Multiple Simultaneous Sound-Localization Cues in the Inferior Colliculus , 2006, The Journal of Neuroscience.

[21]  K. A. Davis,et al.  Rate Representation of Tones in Noise in the Inferior Colliculus of Decerebrate Cats , 2000, Journal of the Association for Research in Otolaryngology.

[22]  H. Heffner,et al.  Localization of noise, use of binaural cues, and a description of the superior olivary complex in the smallest carnivore, the least weasel (Mustela nivalis). , 1987, Behavioral neuroscience.

[23]  D. M. Green,et al.  Sound localization by human listeners. , 1991, Annual review of psychology.

[24]  J. Culling,et al.  Changes in lateralization and loudness judgements during one week of unilateral ear plugging , 1997, Hearing Research.

[25]  Manuel S. Malmierca,et al.  Auditory Spectral Processing , 2005 .

[26]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[27]  R. Kimura,et al.  Termination of the olivo-cochlear bundle in relation to the outer hair cells of the organ of Corti in guinea pig. , 1962, Acta oto-laryngologica.

[28]  John D. Pettigrew,et al.  Frequency dependence of directional amplification at the cat's pinna , 1984, Hearing Research.

[29]  Kenneth M. Cox,et al.  Amplification in the Rehabilitation of Unilateral Deafness: Speech in Noise and Directional Hearing Effects with Bone-Anchored Hearing and Contralateral Routing of Signal Amplification , 2006, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[30]  F. Wightman,et al.  A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction. , 1992, The Journal of the Acoustical Society of America.

[31]  E D Young,et al.  WHY DO CATS NEED A DORSAL COCHLEAR NUCLEUS? , 1996, Journal of basic and clinical physiology and pharmacology.

[32]  T. Imig,et al.  Directionality derived from pinna-cue spectral notches in cat dorsal cochlear nucleus. , 2000, Journal of neurophysiology.

[33]  H. Voigt,et al.  Wideband Inhibition of Dorsal Cochlear Nucleus Type IV Units in Cat: A Computational Model , 2004, Annals of Biomedical Engineering.

[34]  T. Yin,et al.  Behavioral Studies of Sound Localization in the Cat , 1998, The Journal of Neuroscience.

[35]  R A Butler,et al.  The spatial attributes of stimulus frequency and their role in monaural localization of sound in the horizontal plane , 1980, Perception & psychophysics.

[36]  A. L. Leiman,et al.  Responses of inferior colliculus neurons to free field auditory stimuli. , 1972, Experimental neurology.

[37]  John K Niparko,et al.  Behavioral studies of the olivocochlear efferent system: learning to listen in noise. , 2004, Archives of otolaryngology--head & neck surgery.

[38]  Colburn Hs Binaural interaction and localization with various hearing impairments. , 1982 .

[39]  John C. Middlebrooks,et al.  Monaural sound localization: Acute versus chronic unilateral impairment , 1994, Hearing Research.

[40]  E. Lopez-Poveda,et al.  The commissure of the inferior colliculus shapes frequency response areas in rat: an in vivo study using reversible blockade with microinjection of kynurenic acid , 2003, Experimental Brain Research.

[41]  D. M. Green,et al.  Directional dependence of interaural envelope delays. , 1990, The Journal of the Acoustical Society of America.

[42]  Eric D. Young,et al.  Response properties of type II and type III units in dorsal cochlear nucleus , 1982, Hearing Research.

[43]  Yoichi Ando,et al.  On the simulation of sound localization , 1980 .

[44]  T. Imig,et al.  Spectral shape sensitivity contributes to the azimuth tuning of neurons in the cat's inferior colliculus. , 2003, Journal of neurophysiology.

[45]  D. P. Sutherland,et al.  Role of acoustic striae in hearing: Reflexive responses to elevated sound-sources , 1998, Behavioural Brain Research.

[46]  K. A. Davis,et al.  Circuitry and Function of the Dorsal Cochlear Nucleus , 2002 .

[47]  Russell L. Martin,et al.  Neurons in the inferior colliculus of cats sensitive to sound-source elevation , 1990, Hearing Research.

[48]  G. Ehret,et al.  Frequency response areas of neurons in the mouse inferior colliculus. I. Threshold and tuning characteristics , 2001, Experimental Brain Research.

[49]  B. May,et al.  Functional segregation of ITD sensitivity in the inferior colliculus of decerebrate cats. , 2002, Journal of neurophysiology.

[50]  E. M. Granger,et al.  Role of the acoustic striae in hearing: contribution of dorsal and intermediate striae to detection of noises and tones. , 1988, Journal of neurophysiology.

[51]  M. Liberman,et al.  Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy , 1990, The Journal of comparative neurology.

[52]  G. C. Thompson,et al.  Neuroanatomical basis of binaural phase-difference analysis for sound localization: a comparative study. , 1975, Journal of comparative and physiological psychology.

[53]  S Kuwada,et al.  Simultaneous anterograde labeling of axonal layers from lateral superior olive and dorsal cochlear nucleus in the inferior colliculus of cat , 1997, The Journal of comparative neurology.

[54]  A. Møller,et al.  Pathophysiology of tinnitus. , 2003, Otolaryngologic clinics of North America.

[55]  L D Braida,et al.  Binaural pinna disparity: another auditory localization cue. , 1975, The Journal of the Acoustical Society of America.

[56]  Robert A. Butler,et al.  The psychophysical basis of monaural localization , 1984, Hearing Research.

[57]  J. C. Middlebrooks,et al.  Psychophysical customization of directional transfer functions for virtual sound localization. , 2000, The Journal of the Acoustical Society of America.

[58]  Francis M. Wiener,et al.  The Pressure Distribution in the Auditory Canal in a Progressive Sound Field , 1946 .

[59]  F L Wightman,et al.  Headphone simulation of free-field listening. II: Psychophysical validation. , 1989, The Journal of the Acoustical Society of America.

[60]  M. Ruggero,et al.  Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[61]  G. Spirou,et al.  Frequency organization of the dorsal cochlear nucleus in cats , 1993, The Journal of comparative neurology.

[62]  J. C. Middlebrooks Narrow-band sound localization related to external ear acoustics. , 1992, The Journal of the Acoustical Society of America.

[63]  E. Young,et al.  Pinna-based spectral cues for sound localization in cat , 1992, Hearing Research.

[64]  D. Ryugo,et al.  Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus , 1999, The Journal of comparative neurology.

[65]  B. Delgutte,et al.  Receptive fields and binaural interactions for virtual-space stimuli in the cat inferior colliculus. , 1999, Journal of neurophysiology.

[66]  W M Hartmann,et al.  Identification and localization of sound sources in the median sagittal plane. , 1999, The Journal of the Acoustical Society of America.

[67]  John H. Casseday,et al.  Behavioral Studies of Auditory Discrimination: Central Nervous System , 1975 .

[68]  L. Aitkin,et al.  Is the inferior colliculus and obligatory relay in the cat auditory system? , 1984, Neuroscience Letters.

[69]  J. C. Middlebrooks Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. , 1999, The Journal of the Acoustical Society of America.

[70]  E. Young,et al.  Auditory-nerve encoding of pinna-based spectral cues: rate representation of high-frequency stimuli. , 1995, The Journal of the Acoustical Society of America.

[71]  M. Malmierca,et al.  Laminar inputs from dorsal cochlear nucleus and ventral cochlear nucleus to the central nucleus of the inferior colliculus: Two patterns of convergence , 2005, Neuroscience.

[72]  E F Evans,et al.  Auditory processing of complex sounds: an overview. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[73]  E. C. Cherry Some Experiments on the Recognition of Speech, with One and with Two Ears , 1953 .

[74]  H. Voigt,et al.  Response map properties of units in the dorsal cochlear nucleus of barbiturate-anesthetized gerbil (Meriones unguiculatus) , 1997, Hearing Research.

[75]  C. Tsuchitani Functional organization of lateral cell groups of cat superior olivary complex. , 1977, Journal of neurophysiology.

[76]  R. L. Nó,et al.  Anatomy of the eighth nerve: III.—General plan of structure of the primary cochlear nuclei , 1933 .

[77]  Robert A. Butler,et al.  The influence of stimulus bandwidth on localization of sound in space , 1976 .

[78]  A D Musicant,et al.  The influence of pinnae-based spectral cues on sound localization. , 1984, The Journal of the Acoustical Society of America.

[79]  Robert D Hienz,et al.  Vowel Formant Frequency Discrimination in Cats: Comparison of Auditory Nerve Representations and Psychophysical Thresholds. , 1996, Auditory neuroscience.

[80]  A. John Van Opstal,et al.  Contribution of Head Shadow and Pinna Cues to Chronic Monaural Sound Localization , 2004 .

[81]  Doris Kistler,et al.  Of vulcan ears, human ears and 'earprints' , 1998, Nature Neuroscience.

[82]  E. Shaw,et al.  External-ear acoustic models with simple geometry. , 1968, The Journal of the Acoustical Society of America.

[83]  E. Young,et al.  Dorsal cochlear nucleus response properties following acoustic trauma: Response maps and spontaneous activity , 2006, Hearing Research.

[84]  L. Michaels,et al.  Pathological changes in the organ of Corti in presbyacusis as revealed by microslicing and staining. , 1987, Acta oto-laryngologica. Supplementum.

[85]  Paul M. Hofman,et al.  Relearning sound localization with new ears , 1998, Nature Neuroscience.

[86]  B. May,et al.  Sound orientation behavior in cats. I. Localization of broadband noise. , 1996, The Journal of the Acoustical Society of America.

[87]  H S Colburn,et al.  Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. , 1973, The Journal of the Acoustical Society of America.

[88]  D. Oertel,et al.  Morphology and physiology of cells in slice preparations of the dorsal cochlear nucleus of mice , 1989, The Journal of comparative neurology.

[89]  T C Yin,et al.  Pinna Movements of the Cat during Sound Localization , 1998, The Journal of Neuroscience.

[90]  L. Aitkin,et al.  Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. I. Responses to tones of low intensity , 1984, Hearing Research.

[91]  A D Musicant,et al.  Monaural localization: An analysis of practice effects , 1980, Perception & psychophysics.

[92]  James A. Kaltenbach,et al.  Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus , 2005, Hearing Research.

[93]  J. Pettigrew,et al.  Representation of stimulus azimuth by low-frequency neurons in inferior colliculus of the cat. , 1985, Journal of neurophysiology.

[94]  K. A. Davis Evidence of a functionally segregated pathway from dorsal cochlear nucleus to inferior colliculus. , 2002, Journal of neurophysiology.

[95]  D. P. Sutherland,et al.  Role of acoustic striae in hearing: discrimination of sound-source elevation , 1998, Hearing Research.

[96]  G. F. Kuhn Physical acoustics and measurements pertaining to directional hearing , 1983 .

[97]  David K Ryugo,et al.  Primary innervation of the avian and mammalian cochlear nucleus , 2003, Brain Research Bulletin.

[98]  Richard A. Campbell,et al.  XLIX Localization Difficulty in Monaurally Impaired Listeners , 1960 .

[99]  E. Young,et al.  Limited Segregation of Different Types of Sound Localization Information among Classes of Units in the Inferior Colliculus , 2005, The Journal of Neuroscience.

[100]  R. Batra,et al.  Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. II. Coincidence detection. , 1997, Journal of neurophysiology.

[101]  E D Young,et al.  Proprioceptive Information from the Pinna Provides Somatosensory Input to Cat Dorsal Cochlear Nucleus , 2001, The Journal of Neuroscience.

[102]  Warner Fite,et al.  From the Psychological Laboratory of the University of Chicago: The monaural localization of sound. , 1901 .

[103]  A. John Van Opstal,et al.  Relearning Sound Localization with a New Ear , 2005 .

[104]  John J Guinan,et al.  Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF , 1988, Hearing Research.

[105]  J. C. Middlebrooks,et al.  Individual differences in external-ear transfer functions of cats. , 2000, The Journal of the Acoustical Society of America.

[106]  Simon Carlile,et al.  Contrasting monaural and interaural spectral cues for human sound localization. , 2004, The Journal of the Acoustical Society of America.

[107]  Daniel J Tollin,et al.  Spectral cues explain illusory elevation effects with stereo sounds in cats. , 2003, Journal of neurophysiology.

[108]  M. Ruggero,et al.  Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. , 1998, Science.

[109]  D M Green,et al.  Observations on a principal components analysis of head-related transfer functions. , 1992, The Journal of the Acoustical Society of America.

[110]  N I Durlach,et al.  Adapting to supernormal auditory localization cues. I. Bias and resolution. , 1998, The Journal of the Acoustical Society of America.

[111]  J. Brugge,et al.  Virtual-space receptive fields of single auditory nerve fibers. , 1993, Journal of neurophysiology.

[112]  B Masterton,et al.  Role of brainstem auditory structures in sound localization. I. Trapezoid body, superior olive, and lateral lemniscus. , 1967, Journal of neurophysiology.

[113]  I. T. Diamond,et al.  Role of brain-stem auditory structures in sound localization. II. Inferior colliculus and its brachium. , 1968, Journal of neurophysiology.

[114]  Enrique A Lopez-Poveda,et al.  Spectral processing by the peripheral auditory system: facts and models. , 2005, International review of neurobiology.

[115]  B. May,et al.  Spectral cues for sound localization in cats: a model for discharge rate representations in the auditory nerve. , 1997, The Journal of the Acoustical Society of America.

[116]  Simon R. Oldfield,et al.  Acuity of Sound Localisation: A Topography of Auditory Space. I. Normal Hearing Conditions , 1984, Perception.

[117]  W. R. Webster,et al.  Coding of spatial location by single units in the inferior colliculus of the alert cat , 2004, Experimental Brain Research.

[118]  L A JEFFRESS,et al.  A place theory of sound localization. , 1948, Journal of comparative and physiological psychology.

[119]  K. A. Davis,et al.  Single-unit responses in the inferior colliculus of decerebrate cats. II. Sensitivity to interaural level differences. , 1999, Journal of neurophysiology.

[120]  M. Sachs,et al.  Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. , 1979, The Journal of the Acoustical Society of America.

[121]  F L Wightman,et al.  Localization using nonindividualized head-related transfer functions. , 1993, The Journal of the Acoustical Society of America.

[122]  V. Mellert,et al.  Transformation characteristics of the external human ear. , 1977, The Journal of the Acoustical Society of America.

[123]  W. D. Neff,et al.  Localization of pure tones. , 1973, The Journal of the Acoustical Society of America.

[124]  W. Jenkins,et al.  Sound localization: effects of unilateral lesions in central auditory system. , 1982, Journal of neurophysiology.

[125]  Manuel S. Malmierca,et al.  Iontophoresis In Vivo Demonstrates a Key Role for GABAA and Glycinergic Inhibition in Shaping Frequency Response Areas in the Inferior Colliculus of Guinea Pig , 2001, The Journal of Neuroscience.

[126]  E. Shaw Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. , 1974, The Journal of the Acoustical Society of America.

[127]  K. A. Davis,et al.  Single-unit responses in the inferior colliculus of decerebrate cats. I. Classification based on frequency response maps. , 1999, Journal of neurophysiology.

[128]  K. A. Davis,et al.  Modeling inhibition of type II units in the dorsal cochlear nucleus , 1997, Biological Cybernetics.

[129]  Alan R. Palmer,et al.  Onset Neurones in the Anteroventral Cochlear Nucleus Project to the Dorsal Cochlear Nucleus , 2004, Journal of the Association for Research in Otolaryngology.

[130]  Günter Ehret,et al.  Spatial map of frequency tuning‐curve shapes in the mouse inferior colliculus , 2003, Neuroreport.

[131]  J. Adams Ascending projections to the inferior colliculus , 1979, The Journal of comparative neurology.

[132]  U Rosenhall,et al.  The influence of hearing loss on directional hearing. , 1985, Scandinavian audiology.

[133]  M. Sachs,et al.  Representation of Vowel-like Spectra by Discharge Rate Responses of Individual Auditory-Nerve Fibers. , 1996, Auditory neuroscience.

[134]  E. S. Malinina,et al.  The Selectivity of Neurons in the Auditory Zone of the Mouse Midbrain to the Direction of Movement of a Spectral Notch in Wide-Band Noise , 2004, Neuroscience and Behavioral Physiology.

[135]  K. A. Davis,et al.  Auditory Processing of Spectral Cues for Sound Localization in the Inferior Colliculus , 2003, Journal of the Association for Research in Otolaryngology.

[136]  T. Imig,et al.  Effect of unilateral noise exposure on the tonotopic distribution of spontaneous activity in the cochlear nucleus and inferior colliculus in the cortically intact and decorticate rat , 2005, The Journal of comparative neurology.

[137]  L. Aitkin,et al.  The representation of stimulus azimuth by high best-frequency azimuth-selective neurons in the central nucleus of the inferior colliculus of the cat. , 1987, Journal of neurophysiology.

[138]  J. Hebrank,et al.  Spectral cues used in the localization of sound sources on the median plane. , 1974, The Journal of the Acoustical Society of America.

[139]  B. May,et al.  Spectral cues for sound localization in cats: effects of frequency domain on minimum audible angles in the median and horizontal planes. , 1996, The Journal of the Acoustical Society of America.

[140]  Frederic L. Wightman,et al.  A New Approach to the Study of Human Sound Localization , 1987 .

[141]  R. V. L. Hartley,et al.  The Binaural Location of Pure Tones. , 1921 .

[142]  Masterton Rb Neurobehavioral studies of the central auditory system. , 1997 .

[143]  L. Aitkin The Auditory Midbrain: Structure and Function in the Central Auditory Pathway , 1986 .

[144]  T. Brozoski,et al.  The effect of dorsal cochlear nucleus ablation on tinnitus in rats , 2005, Hearing Research.

[145]  E D Young,et al.  Effects of somatosensory and parallel-fiber stimulation on neurons in dorsal cochlear nucleus. , 1996, Journal of neurophysiology.

[146]  D O Kim,et al.  A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones. , 1979, Journal of neurophysiology.

[147]  M. Cynader,et al.  A computational theory of spectral cue localization , 1993 .

[148]  F L Wightman,et al.  Headphone simulation of free-field listening. I: Stimulus synthesis. , 1989, The Journal of the Acoustical Society of America.

[149]  Heinrich Hertz,et al.  On the differences between localization and lateralization. , 1974, The Journal of the Acoustical Society of America.

[150]  M. Wiederhold Variations in the effects of electric stimulation of the crossed olivocochlear bundle on cat single auditory-nerve-fiber responses to tone bursts. , 1970, The Journal of the Acoustical Society of America.

[151]  B. May,et al.  Sound orientation behavior in cats. II. Mid-frequency spectral cues for sound localization. , 1996, The Journal of the Acoustical Society of America.

[152]  W. D. Neff,et al.  Sound localization: the role of the commissural pathways of the auditory system of the cat. , 1974, Brain research.

[153]  B. May,et al.  Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus , 2006, Hearing Research.

[154]  W. D. Neff Behavioral studies of auditory discrimination. , 1957, The Annals of otology, rhinology, and laryngology.

[155]  P. Jastreboff,et al.  Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig. , 1986, The Journal of the Acoustical Society of America.

[156]  J. E. Hind,et al.  Direction-dependent spectral properties of cat external ear: new data and cross-species comparisons. , 1990, The Journal of the Acoustical Society of America.

[157]  E. Shaw The External Ear , 1974 .

[158]  P. Jeffrey Bloom,et al.  Creating Source Elevation Illusions by Spectral Manipulation , 1976 .

[159]  Richard R. Fay,et al.  Sound source localization , 2005 .

[160]  J. E. Hind,et al.  Interaural time differences: implications regarding the neurophysiology of sound localization. , 1980, The Journal of the Acoustical Society of America.

[161]  L. Aitkin,et al.  Responses of neurons in inferior colliculus to variations in sound-source azimuth. , 1984, Journal of neurophysiology.

[162]  W M Hartmann,et al.  Sound localization in the median sagittal plane by listeners with presbyacusis. , 1998, Journal of the American Academy of Audiology.

[163]  B. May Role of the dorsal cochlear nucleus in the sound localization behavior of cats , 2000, Hearing Research.

[164]  R. Butler,et al.  Spectral cues utilized in the localization of sound in the median sagittal plane. , 1977, The Journal of the Acoustical Society of America.

[165]  T Sone,et al.  Sound localization for a virtual sound source in cases of chronic otitis media. , 1999, Audiology : official organ of the International Society of Audiology.

[166]  F L Wightman,et al.  Monaural sound localization revisited. , 1997, The Journal of the Acoustical Society of America.

[167]  K. Glendenning,et al.  Acoustic chiasm: efferent projections of the lateral superior olive , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[168]  C. C. Pratt The spatial character of high and low tones. , 1930 .

[169]  M. Gardner,et al.  Problem of localization in the median plane: effect of pinnae cavity occlusion. , 1973, The Journal of the Acoustical Society of America.

[170]  M. Sachs,et al.  Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. , 1987, Journal of neurophysiology.

[171]  L. Rayleigh,et al.  XII. On our perception of sound direction , 1907 .

[172]  K. A. Davis,et al.  Spectral integration by type II interneurons in dorsal cochlear nucleus. , 1999, Journal of neurophysiology.

[173]  Pawel J. Jastreboff,et al.  Salicylate-induced abnormal activity in the inferior colliculus of rats , 1995, Hearing Research.

[174]  K. A. Davis Spectral processing in the inferior colliculus. , 2005, International review of neurobiology.

[175]  Eric D. Young,et al.  What's a cerebellar circuit doing in the auditory system? , 2004, Trends in Neurosciences.

[176]  D. P. Phillips,et al.  Directionality of sound pressure transformation at the cat's pinna , 1982, Hearing Research.

[177]  J. C. Middlebrooks,et al.  Individual differences in external-ear transfer functions reduced by scaling in frequency. , 1999, The Journal of the Acoustical Society of America.