Mapping Multiplex Hubs in Human Functional Brain Networks

Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches.

[1]  Adriano B. L. Tort,et al.  On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus , 2016, eLife.

[2]  William H. Thompson,et al.  The frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain , 2015, NeuroImage.

[3]  M. Farah,et al.  Progress and challenges in probing the human brain , 2015, Nature.

[4]  Peter F. Buckley,et al.  Schizophrenia Research: A Progress Report. , 2015, Psychiatric Clinics of North America.

[5]  D. Bassett,et al.  Dynamic reconfiguration of frontal brain networks during executive cognition in humans , 2015, Proceedings of the National Academy of Sciences.

[6]  Manuel Graña,et al.  Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM , 2015, Neural Networks.

[7]  Gary H. Glover,et al.  BOLD fractional contribution to resting-state functional connectivity above 0.1Hz , 2015, NeuroImage.

[8]  Bharat B. Biswal,et al.  Functional Integration Between Brain Regions at Rest Occurs in Multiple-Frequency Bands , 2015, Brain Connect..

[9]  Norihiro Sadato,et al.  Frequency-specific network topologies in the resting human brain , 2014, Front. Hum. Neurosci..

[10]  Dima Shepelyansky,et al.  Google matrix analysis of directed networks , 2014, ArXiv.

[11]  Alexandre Arenas,et al.  Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems , 2014, ArXiv.

[12]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[13]  Vito Latora,et al.  Structural reducibility of multilayer networks , 2014, Nature Communications.

[14]  M. V. D. Heuvel,et al.  Brain Networks in Schizophrenia , 2014, Neuropsychology Review.

[15]  Yufeng Zang,et al.  Functional brain hubs and their test–retest reliability: A multiband resting-state functional MRI study , 2013, NeuroImage.

[16]  O. Sporns,et al.  Network hubs in the human brain , 2013, Trends in Cognitive Sciences.

[17]  Sergio Gómez,et al.  Ranking in interconnected multilayer networks reveals versatile nodes , 2013, Nature Communications.

[18]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[19]  Wei Liao,et al.  Mapping the Voxel-Wise Effective Connectome in Resting State fMRI , 2013, PloS one.

[20]  Mikail Rubinov,et al.  Schizophrenia and abnormal brain network hubs , 2013, Dialogues in clinical neuroscience.

[21]  Jonathan D. Power,et al.  Evidence for Hubs in Human Functional Brain Networks , 2013, Neuron.

[22]  Joaquín Goñi,et al.  Abnormal rich club organization and functional brain dynamics in schizophrenia. , 2013, JAMA psychiatry.

[23]  A. Arenas,et al.  Mathematical Formulation of Multilayer Networks , 2013, 1307.4977.

[24]  Albert Solé-Ribalta,et al.  Navigability of interconnected networks under random failures , 2013, Proceedings of the National Academy of Sciences.

[25]  Mason A. Porter,et al.  Task-Based Core-Periphery Organization of Human Brain Dynamics , 2012, PLoS Comput. Biol..

[26]  O. Sporns,et al.  Network centrality in the human functional connectome. , 2012, Cerebral cortex.

[27]  Conrado J. Pérez Vicente,et al.  Diffusion dynamics on multiplex networks , 2012, Physical review letters.

[28]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[29]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[30]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[31]  Biyu J. He Scale-Free Properties of the Functional Magnetic Resonance Imaging Signal during Rest and Task , 2011, The Journal of Neuroscience.

[32]  Jeffrey S Anderson,et al.  Network anticorrelations, global regression, and phase‐shifted soft tissue correction , 2011, Human brain mapping.

[33]  Olaf Sporns,et al.  The Non-Random Brain: Efficiency, Economy, and Complex Dynamics , 2010, Front. Comput. Neurosci..

[34]  Goran Trajkovski,et al.  Developments in Intelligent Agent Technologies and Multi-Agent Systems: Concepts and Applications , 2010 .

[35]  Scott T. Grafton,et al.  Dynamic reconfiguration of human brain networks during learning , 2010, Proceedings of the National Academy of Sciences.

[36]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[37]  M. V. D. Heuvel,et al.  Exploring the brain network: A review on resting-state fMRI functional connectivity , 2010, European Neuropsychopharmacology.

[38]  E. Bullmore,et al.  Behavioral / Systems / Cognitive Functional Connectivity and Brain Networks in Schizophrenia , 2010 .

[39]  J. Fell,et al.  Cross-frequency coupling supports multi-item working memory in the human hippocampus , 2010, Proceedings of the National Academy of Sciences.

[40]  Adriano B. L. Tort,et al.  Theta–gamma coupling increases during the learning of item–context associations , 2009, Proceedings of the National Academy of Sciences.

[41]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[42]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[43]  E. Bullmore,et al.  Meta-analysis of diffusion tensor imaging studies in schizophrenia , 2009, Schizophrenia Research.

[44]  S. Severini,et al.  The von Neumann Entropy of Networks , 2008, 0812.2597.

[45]  J Martinerie,et al.  Functional modularity of background activities in normal and epileptic brain networks. , 2008, Physical review letters.

[46]  E. Bullmore,et al.  Meta-Analysis of Gray Matter Anomalies in Schizophrenia: Application of Anatomic Likelihood Estimation and Network Analysis , 2008, Biological Psychiatry.

[47]  E. Bullmore,et al.  Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia , 2008, The Journal of Neuroscience.

[48]  Daniel L. Rubin,et al.  Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease , 2008, PLoS Comput. Biol..

[49]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[50]  O. Sporns,et al.  Identification and Classification of Hubs in Brain Networks , 2007, PloS one.

[51]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[52]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[53]  E. Bullmore,et al.  Adaptive reconfiguration of fractal small-world human brain functional networks , 2006, Proceedings of the National Academy of Sciences.

[54]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[55]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[56]  T. Prescott,et al.  The brainstem reticular formation is a small-world, not scale-free, network , 2006, Proceedings of the Royal Society B: Biological Sciences.

[57]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[58]  T. Crow,et al.  Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. , 2005, The American journal of psychiatry.

[59]  S. Severini,et al.  The Laplacian of a Graph as a Density Matrix: A Basic Combinatorial Approach to Separability of Mixed States , 2004, quant-ph/0406165.

[60]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Newman Assortative mixing in networks. , 2002, Physical review letters.

[62]  Dietmar Cordes,et al.  Hierarchical clustering to measure connectivity in fMRI resting-state data. , 2002, Magnetic resonance imaging.

[63]  V. Haughton,et al.  Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. , 2001, AJNR. American journal of neuroradiology.

[64]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[65]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[66]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[67]  R. Rodnitzky,et al.  The Cerebral Cortex , 1964 .

[68]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[69]  J. Dunton,et al.  THE AMERICAN JOURNAL OF PSYCHIATRY , 1944 .

[70]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[71]  Mark H. Johnson,et al.  Human functional brain , 2016 .

[72]  Thomas C. Sharkey,et al.  Identification and Classification , 2013 .

[73]  Hermann Haken,et al.  Exploring the Brain , 2013 .

[74]  Luciano da Fontoura Costa,et al.  Journal of Complex Networks , 2013 .

[75]  Miao‐kun Sun,et al.  Trends in cognitive sciences , 2012 .

[76]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[77]  Jonathan Tennyson Electron – molecule collision calculations using the R-matrix method , 2010 .

[78]  R. Cabeza,et al.  Frontiers in Human Neuroscience , 2009 .

[79]  Chris Godsil,et al.  The Laplacian of a Graph , 2001 .

[80]  L. Breiman Random Forests , 2001, Machine Learning.

[81]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[82]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[83]  M. Figley,et al.  The American Journal of Neuroradiology , 1980 .

[84]  E. Lieb,et al.  Physical Review Letters , 1958, Nature.

[85]  Henning Vauth,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication , 2022 .

[86]  Vince D. Calhoun,et al.  Human Neuroscience , 2022 .

[87]  Multiplicity Free Schur,et al.  Annals of Combinatorics , 2022 .