Body composition and tissue accretion rates of barrows fed corn-soybean meal diets or low-protein, amino acid-supplemented diets at different feeding levels.
暂无分享,去创建一个
Two experiments, each with 39 high-lean-gain potential barrows, were conducted to evaluate the organ weights, body chemical composition, and tissue accretion rates of pigs fed corn-soybean meal diets (CONTROL) and low-protein diets supplemented with crystalline lysine, threonine, tryptophan, and methionine either on an ideal protein basis (IDEAL) or in a pattern similar to that of the control diet (AACON). Amino acids were added on a true ileally digestible basis. The initial and final BW were, respectively, 31.5 and 82.3 kg in Exp. 1 and 32.7 and 57.1 kg in Exp. 2, and pigs were fed for 55 and 27 d in Exp. 1 and 2, respectively. In Exp. 1, the CONTROL and IDEAL diets were offered on an ad libitum basis, or by feeding 90 or 80% of ad libitum intake. In Exp. 2, the CONTROL, IDEAL, and AACON diets were offered on an ad libitum basis, or by feeding 80% of the ad libitum intake. Three pigs were killed at the start of the experiments and three from each treatment were killed at the end of each experiment to determine body chemical composition. In both trials, the whole-body protein concentration (g/kg) and the accretion rates of protein (g/d) were greater (P < 0.05) for pigs fed the CONTROL than for pigs fed the IDEAL and AACON diets. In Exp. 1, pigs fed the CONTROL diet had a trend (P < 0.10) for greater water and lower lipid concentration and had greater (P < 0.05) water and ash accretion rates. Whole-body protein concentration was greatest (P < 0.05) in pigs fed at 80% of ad libitum, but protein, water, and ash accretion rates were greatest (P < 0.05) in pigs allowed ad libitum access to feed. In summary, pigs fed the IDEAL and the AACON diets had less protein in the body and lower protein accretion rates than pigs fed the CONTROL diet. It seems that reductions in protein deposition in pigs fed the IDEAL and AACON diets may have been due to a deficiency of one or more essential amino acids or possibly to increases in the NE for metabolic processes leading to increases in adipose tissue deposition.