On cyclic codes over ℤ4 + uℤ4 and their ℤ4-images

Linear codes over the ring ℤ4 + uℤ4 have been introduced recently. In this paper, we study cyclic codes over this ring. We determine algebraic structures of cyclic codes over ℤ4 + uℤ4 and obtain basic facts about their generators. Making use of their algebraic structure, we conducted a computer search for cyclic codes over ℤ4 + uℤ4 and obtained many new linear codes over ℤ4. These codes have been added to the database of ℤ4 codes.

[1]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[2]  Vera Pless,et al.  Cyclic codes and quadratic residue codes over Z4 , 1996, IEEE Trans. Inf. Theory.

[3]  Masaaki Harada,et al.  Type II Codes, Even Unimodular Lattices, and Invariant Rings , 1999, IEEE Trans. Inf. Theory.

[4]  Jay A. Wood Duality for modules over finite rings and applications to coding theory , 1999 .

[5]  J. Wolfman Negacyclic and cyclic codes over Z/sub 4/ , 1999 .

[6]  Jacques Wolfmann Binary images of cyclic codes over Z4 , 2001, IEEE Trans. Inf. Theory.

[7]  Taher Abualrub,et al.  Reversible cyclic codes over Z4 , 2007, Australas. J Comb..

[8]  K.-U. Schmidt Quaternary Constant-Amplitude Codes for Multicode CDMA , 2009, IEEE Trans. Inf. Theory.

[9]  Piotr Remlein,et al.  Genetic Algorithm used in Search of good Tailbiting Codes , 2009, Int. J. Commun. Networks Inf. Secur..

[10]  Suat Karadeniz,et al.  Cyclic codes over $${{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}$$ , 2011 .

[11]  Taher Abualrub,et al.  Quaternary Quasi-Cyclic Codes with Even Length Components , 2011, Ars Comb..

[12]  T. Aaron Gulliver,et al.  Some Good Cyclic and Quasi-Twisted Z4-Linear Codes , 2011, Ars Comb..

[13]  Steven T. Dougherty,et al.  Cyclic codes over Rk , 2012, Des. Codes Cryptogr..

[14]  Masaaki Harada,et al.  Optimal self-dual Z4-codes and a unimodular lattice in dimension 41 , 2011, Finite Fields Their Appl..

[15]  Suat Karadeniz,et al.  Some new binary quasi-cyclic codes from codes over the ring 𝔽2+u𝔽2+v𝔽2+uv𝔽2 , 2013, Appl. Algebra Eng. Commun. Comput..

[16]  Suat Karadeniz,et al.  Linear Codes over Z_4+uZ_4: MacWilliams identities, projections, and formally self-dual codes , 2014, Finite Fields Their Appl..

[17]  Nuh Aydin,et al.  A Database of Z4 Codes , 2015, ArXiv.