2300V Reverse Breakdown Voltage Ga2O3 Schottky Rectifiers

[1]  Lu Han,et al.  (Invited) Ultrawide Bandgap β-Ga2O3 Thin Films: Growths, Properties and Devices , 2017 .

[2]  S. J. Pearton,et al.  High Breakdown Voltage (−201) $\beta $ -Ga2O3 Schottky Rectifiers , 2017, IEEE Electron Device Letters.

[3]  Zbigniew Galazka,et al.  3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped $\beta $ -Ga2O3 MOSFETs , 2016, IEEE Electron Device Letters.

[4]  Akito Kuramata,et al.  High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth , 2016 .

[5]  R. Davis,et al.  Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals , 2017 .

[6]  Alex Q. Huang,et al.  Power Semiconductor Devices for Smart Grid and Renewable Energy Systems , 2017, Proceedings of the IEEE.

[7]  S. Ringel,et al.  Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy , 2016 .

[8]  U. Singisetti,et al.  Electron mobility in monoclinic β-Ga_2O_3—Effect of plasmon-phonon coupling, anisotropy, and confinement , 2017, 1709.08117.

[9]  Reinhard Uecker,et al.  Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method , 2011 .

[10]  Xutang Tao,et al.  Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics , 2017 .

[11]  Stephen J. Pearton,et al.  High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3 , 2017 .

[12]  Charles Howard Henry,et al.  The effect of surface recombination on current in AlxGa1−xAs heterojunctions , 1978 .

[13]  S. Yamakoshi,et al.  Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n––Ga2O3 drift layers grown by halide vapor phase epitaxy , 2016 .

[14]  S. Yamakoshi,et al.  Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process , 2016 .

[15]  B. Pate,et al.  Nanocrystalline Diamond Integration with III-Nitride HEMTs , 2017 .

[16]  M. Kasu,et al.  Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes , 2016 .

[17]  Jaime A. Freitas,et al.  Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition , 2016 .

[18]  Gwangseok Yang,et al.  Electrical Characteristics of Vertical Ni/β-Ga2O3 Schottky Barrier Diodes at High Temperatures , 2017 .

[19]  M. Islam,et al.  Ultrawide‐Bandgap Semiconductors: Research Opportunities and Challenges , 2017 .

[20]  Masataka Higashiwaki,et al.  Guest Editorial: The dawn of gallium oxide microelectronics , 2018 .

[21]  K. Shenai,et al.  Performance evaluation of high-power wide band-gap semiconductor rectifiers , 1999 .

[22]  James S. Speck,et al.  Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy , 2017 .

[23]  Akito Kuramata,et al.  First Demonstration of Ga2O3 Trench MOS-Type Schottky Barrier Diodes , 2017, IEEE Electron Device Letters.

[24]  M. Kasu,et al.  Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects , 2017 .

[25]  Y. Kumagai,et al.  State-of-the-art technologies of gallium oxide power devices , 2017 .

[26]  M. Melloch,et al.  Influence of perimeter recombination on high-efficiency GaAs p/n heteroface solar cells , 1988, IEEE Electron Device Letters.

[27]  Stephen J. Pearton,et al.  A review of Ga2O3 materials, processing, and devices , 2018 .

[28]  F. Ren,et al.  Surface recombination velocities on processed InGaP p‐n junctions , 1993 .

[29]  Jaime A. Freitas,et al.  Structural, Optical, and Electrical Characterization of Monoclinic β-Ga2O3 Grown by MOVPE on Sapphire Substrates , 2016, Journal of Electronic Materials.

[30]  J. Speck,et al.  Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy , 2017 .

[31]  M. Kasu,et al.  Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on β-Ga2O3 , 2017 .

[32]  Qi Liu,et al.  Schottky Barrier Rectifier Based on (100) $\beta$ -Ga2O3 and its DC and AC Characteristics , 2018, IEEE Electron Device Letters.

[33]  F. Ren,et al.  Temperature-Dependent Characteristics of Ni/Au and Pt/Au Schottky Diodes on β-Ga2O3 , 2017 .

[34]  Andreas Fiedler,et al.  Editors' Choice—Si- and Sn-Doped Homoepitaxial β-Ga2O3 Layers Grown by MOVPE on (010)-Oriented Substrates , 2017 .

[35]  S. Dhar,et al.  Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes , 2016 .

[36]  Akito Kuramata,et al.  Origins of etch pits in β-Ga2O3(010) single crystals , 2016 .

[37]  Shinya Watanabe,et al.  Bulk crystal growth of Ga2O3 , 2018, OPTO.

[38]  Steven A. Ringel,et al.  Influence of metal choice on (010) β-Ga2O3 Schottky diode properties , 2017 .

[39]  Akito Kuramata,et al.  1-kV vertical Ga2O3 field-plated Schottky barrier diodes , 2017 .

[40]  Yuta Koga,et al.  High-mobility β-Ga2O3() single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact , 2015 .

[41]  S. J. Pearton,et al.  Perspective—Opportunities and Future Directions for Ga2O3 , 2017 .

[42]  Gwangseok Yang,et al.  High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate , 2018 .