Multiscale and Stabilized Methods

Abstract : This article presents an introduction to multiscale and stabilized methods, which represent unified approaches to modeling and numerical solution of fluid dynamic phenomena. Finite element applications are emphasized but the ideas are general and apply to other numerical methods as well. (They have been used in the development of finite difference, finite volume, and spectral methods, in addition to finite element methods.) The analytical ideas are first illustrated for time-harmonic wave-propagation problems in unbounded fluid domains governed by the Helmholtz equation. This leads to the well-known Dirichlet-to-Neumann formulation. A general treatment of the variational multiscale method in the context of an abstract Dirichlet problem is then presented which is applicable to advective-diffusive processes and other processes of physical interest. It is shown how the exact theory represents a paradigm for subgrid-scale models and posteriori error estimation. Hierarchical p-methods and bubble function methods are examined in order to understand and, ultimately, approximate the "fine-scale Green's function" which appears in the theory. Relationships among so-called residual-free bubbles, element Green's functions, and stabilized methods are exhibited. These ideas are then generalized to a class of non-symmetric, linear evolution operators formulated in space-time. The variational multiscale method also provides guidelines and inspiration for the development of stabilized methods which have attracted considerable interest and have been extensively utilized in engineering and the physical sciences. An overview of stabilized methods for advective-diffusive equations is presented. A variational multiscale treatment of incompressible viscous flows, including turbulence is also described. This represents an alternative formulation of Large Eddy Simulation which provides simplified theoretical framework of LES with potential for improved modeling.

[1]  Guglielmo Scovazzi,et al.  Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations☆ , 2007 .

[2]  Hervé Jeanmart,et al.  On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation , 2001, Journal of Fluid Mechanics.

[3]  Endre Süli,et al.  Residual-free bubbles for advection-diffusion problems: the general error analysis , 2000, Numerische Mathematik.

[4]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[5]  C. Meneveau,et al.  Dynamic Smagorinsky model on anisotropic grids , 1997 .

[6]  Alessandro Russo,et al.  Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems , 1998 .

[7]  Omar M. Knio,et al.  Spectral and hyper eddy viscosity in high-Reynolds-number turbulence , 2000, Journal of Fluid Mechanics.

[8]  Hervé Jeanmart,et al.  On the comparison of turbulence intensities from large-eddy simulation with those from experiment or direct numerical simulation , 2002 .

[9]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[10]  Wei Liu,et al.  An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence , 1993 .

[11]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[12]  S. Scott Collis,et al.  Variational Multiscale Modeling for Turbulence Control , 2002 .

[13]  Thomas J. R. Hughes,et al.  Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations , 2004 .

[14]  Thomas J. R. Hughes,et al.  Computation of trailing-edge noise due to turbulent flow over an airfoil , 2004 .

[15]  Dan Givoli,et al.  A finite element method for large domains , 1989 .

[16]  Thomas J. R. Hughes,et al.  A new family of stable elements for nearly incompressible elasticity based on a mixed Petrov-Galerkin finite element formulation , 1988 .

[17]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[18]  T. Hughes,et al.  Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations , 1993 .

[19]  Peter M. Pinsky,et al.  A multiscale finite element method for the Helmholtz equation , 1998 .

[20]  D. Mccomb,et al.  EXPLICIT-SCALES PROJECTIONS OF THE PARTITIONED NON-LINEAR TERM IN DIRECT NUMERICAL SIMULATION OF THE NAVIER-STOKES EQUATION , 1998 .

[21]  Franco Brezzi,et al.  Augmented spaces, two‐level methods, and stabilizing subgrids , 2002 .

[22]  F. Brezzi,et al.  On drilling degrees of freedom , 1989 .

[23]  Martin Stynes,et al.  On the Stability of Residual-Free Bubbles for Convection-Diffusion Problemsand their Approximation by a Two-Level Finite Element Method. , 1997 .

[24]  S. Collis,et al.  Monitoring unresolved scales in multiscale turbulence modeling , 2001 .

[25]  C. Dohrmann,et al.  A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .

[26]  K. Lilly On the application of the eddy viscosity concept in the Inertial sub-range of turbulence , 1966 .

[27]  R. Kraichnan Eddy Viscosity in Two and Three Dimensions , 1976 .

[28]  Pierre Sagaut,et al.  An entropy-variable-based VMS/GLS method for the simulation of compressible flows on unstructured grids , 2006 .

[29]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[30]  D. Lilly The length scale for sub-grid-scale parameterization with anisotropic resolution , 1989 .

[31]  Parviz Moin,et al.  Erratum: ‘‘A dynamic subgrid‐scale eddy viscosity model’’ [Phys. Fluids A 3, 1760 (1991)] , 1991 .

[32]  U. Hetmaniuk,et al.  Multiple-stencil dispersion analysis of the Lagrange multipliers in a discontinuous Galerkin method for the Helmholtz equation , 2003 .

[33]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[34]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[35]  M. Lighthill On sound generated aerodynamically II. Turbulence as a source of sound , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[37]  Charbel Farhat,et al.  A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime , 2003 .

[38]  C. Farhat,et al.  Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .

[39]  P. Moin,et al.  The basic equations for the large eddy simulation of turbulent flows in complex geometry , 1995 .

[40]  Srinivas Ramakrishnan,et al.  Multiscale Modeling for Turbulence Simulation in Complex Geometries , 2004 .

[41]  P. Moin,et al.  A dynamic subgrid‐scale model for compressible turbulence and scalar transport , 1991 .

[42]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[43]  Choi-Hong Lai,et al.  A Defect Correction Method for Multi-Scale Problems in Computational Aeroacoustics , 2002 .

[44]  T. Hughes,et al.  Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics , 1978 .

[45]  Guglielmo Scovazzi,et al.  Galilean invariance and stabilized methods for compressible flows , 2007 .

[46]  T. Hughes,et al.  The variational multiscale formulation of LES - Channel Flow at Re(sub tau) = 590 , 2002 .

[47]  Guglielmo Scovazzi,et al.  A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework , 2007 .

[48]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[49]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[50]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[51]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .

[52]  Hervé Jeanmart,et al.  Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynami , 2001 .

[53]  Thomas J. R. Hughes,et al.  Stabilized shock hydrodynamics: I. A Lagrangian method , 2007 .

[54]  P. Hemker,et al.  Mixed defect correction iteration for the accurate solution of the convection diffusion equation , 1982 .

[55]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[56]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[57]  David J. Silvester,et al.  Stabilised bilinear—constant velocity—pressure finite elements for the conjugate gradient solution of the Stokes problem , 1990 .

[58]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[59]  Helio J. C. Barbosa,et al.  Boundary Lagrange multipliers in finite element methods: Error analysis in natural norms , 1992 .

[60]  Franco Brezzi,et al.  Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .

[61]  S. Scott Collis,et al.  The DG/VMS Method for Unified Turbulence Simulation , 2002 .

[62]  Giancarlo Sangalli,et al.  A robust a posteriori estimator for the Residual-free Bubbles method applied to advection-diffusion problems , 2001, Numerische Mathematik.

[63]  Ramon Codina,et al.  Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations , 2000, Numerische Mathematik.

[64]  Hervé Jeanmart,et al.  Assessment of some models for LES without/with explicit filtering , 2001 .

[65]  A POSTERIORI ERROR ESTIMATORS VIA BUBBLE FUNCTIONS , 1996 .

[66]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[67]  M. Farge,et al.  Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis , 1999 .

[68]  William J. Layton A Nonlinear, Subgridscale Model for Incompressible viscous Flow Problems , 1996, SIAM J. Sci. Comput..

[69]  Giancarlo Sangalli,et al.  LINK-CUTTING BUBBLES FOR THE STABILIZATION OF CONVECTION-DIFFUSION-REACTION PROBLEMS , 2003 .

[70]  Alessandro Russo,et al.  On the choice of a stabilizing subgrid for convection?diffusion problems , 2005 .

[71]  Giancarlo Sangalli Quasi Optimality of the SUPG Method for the One-Dimensional Advection-Diffusion Problem , 2003, SIAM J. Numer. Anal..

[72]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[73]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[74]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[75]  Alessandro Russo,et al.  Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations , 1996 .

[76]  L. D. Marini,et al.  A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems , 1999 .

[77]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[78]  R. Temam,et al.  Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method , 1993 .

[79]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[80]  On the limitations of bubble functions , 1994 .

[81]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows involving moving boundaries and interfaces☆ , 1993 .

[82]  Kenneth E. Jansen,et al.  A better consistency for low-order stabilized finite element methods , 1999 .

[83]  M. Lighthill On sound generated aerodynamically I. General theory , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[84]  Endre Süli,et al.  Modeling subgrid viscosity for advection–diffusion problems , 2000 .

[85]  Yasuhiro Ban,et al.  Predicting the wind noise from the pantograph cover of a train , 1997 .

[86]  Orszag,et al.  Kolmogorov's refined similarity hypothesis for hyperviscous turbulence. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[87]  E. Turkel,et al.  ANALYTICAL AND NUMERICAL STUDIES OF A FINITE ELEMENT PML FOR THE HELMHOLTZ EQUATION , 2000 .

[88]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[89]  Jim Douglas,et al.  An absolutely stabilized finite element method for the stokes problem , 1989 .

[90]  T. Hughes,et al.  Variational and Multiscale Methods in Turbulence , 2005 .

[91]  Venkat Venkatakrishnan,et al.  Higher Order Schemes for the Compressible Navier-Stokes Equations , 2003 .

[92]  S. Collis,et al.  Partition selection in multiscale turbulence modeling , 2006 .

[93]  Rüdiger Verfürth,et al.  A posteriori error estimators for stationary convection–diffusion problems: a computational comparison , 2000 .

[94]  Charles Meneveau,et al.  Generalized Smagorinsky model for anisotropic grids , 1993 .

[95]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[96]  T. Hughes,et al.  Studies of domain‐based formulations for computing exterior problems of acoustics , 1994 .

[97]  Giancarlo Sangalli,et al.  The residual-free bubble numerical method with quadratic elements , 2004 .

[98]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[99]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[100]  Thomas J. R. Hughes,et al.  Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow , 2004 .

[101]  S. Orszag,et al.  Self-similar decay of three-dimensional homogeneous turbulence with hyperviscosity. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[102]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[103]  U. Piomelli,et al.  LARGE-EDDY SIMULATION: PRESENT STATE AND FUTURE PERSPECTIVES , 1998 .

[104]  Alessandro Russo,et al.  Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles , 1996 .

[105]  Ramon Codina,et al.  Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .

[106]  William Layton,et al.  APPROXIMATION OF THE LARGER EDDIES IN FLUID MOTIONS II: A MODEL FOR SPACE-FILTERED FLOW , 2000 .

[107]  Pavel B. Bochev,et al.  An Absolutely Stable Pressure-Poisson Stabilized Finite Element Method for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[108]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[109]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[110]  T. Hughes,et al.  Computational procedures for determining structural-acoustic response due to hydrodynamic sources , 2000 .

[111]  Charbel Farhat,et al.  The discontinuous enrichment method for multiscale analysis , 2003 .

[112]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[113]  Thomas J. R. Hughes,et al.  A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method , 2006 .

[114]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[115]  Hervé Jeanmart,et al.  Comparison of recent dynamic subgrid-scale models in the case of the turbulent channel flow , 2002 .

[116]  Thomas J. R. Hughes,et al.  Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains , 1992 .

[117]  Srinivas Ramakrishnan,et al.  Turbulence control simulation using the variational multiscale method , 2004 .

[118]  L. Franca,et al.  The Galerkin gradient least-squares method , 1989 .

[119]  Charbel Farhat,et al.  A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .

[120]  T. Hughes,et al.  Sensitivity of the scale partition for variational multiscale LES of channel flow , 2004 .

[121]  Giancarlo Sangalli,et al.  Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems , 2006, SIAM J. Numer. Anal..

[122]  Giancarlo Sangalli,et al.  Global and Local Error Analysis for the Residual-Free Bubbles Method Applied to Advection-Dominated Problems , 2000, SIAM J. Numer. Anal..

[123]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[124]  Roger Temam,et al.  Incremental unknowns, multilevel methods and the numerical simulation of turbulence , 1998 .

[125]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .

[126]  R. Codina On stabilized finite element methods for linear systems of convection-diffusion-reaction equations , 2000 .

[127]  C. Farhat,et al.  The Discontinuous Enrichment Method , 2000 .

[128]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[129]  W. Heisenberg On the theory of statistical and isotropic turbulence , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[130]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .

[131]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[132]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[133]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[134]  T. Hughes,et al.  Finite element method for high-speed flows - Consistent calculation of boundary flux , 1987 .

[135]  Jean-Luc Guermond,et al.  Subgrid stabilization of Galerkin approximations of linear monotone operators , 2001 .

[136]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[137]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[138]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[139]  Volker John,et al.  Approximating Local Averages of Fluid Velocities: The Stokes Problem , 2001, Computing.

[140]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[141]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[142]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[143]  Thomas J. R. Hughes,et al.  A Multiscale Discontinuous Galerkin Method , 2005, LSSC.

[144]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[145]  Wei Liu,et al.  Energy transfer in numerically simulated wall‐bounded turbulent flows , 1994 .