Human-XAI Interaction: A Review and Design Principles for Explanation User Interfaces

[1]  Jürgen Ziegler,et al.  Explaining recommendations by means of aspect-based transparent memories , 2020, IUI.

[2]  Li Chen,et al.  Trust building with explanation interfaces , 2006, IUI '06.

[3]  Yusuke Sugano,et al.  Investigating audio data visualization for interactive sound recognition , 2020, IUI.

[4]  Alfred Kobsa,et al.  Inspectability and control in social recommenders , 2012, RecSys.

[5]  Patrick Gebhard,et al.  PARLEY: a transparent virtual social agent training interface , 2019, IUI Companion.

[6]  Justin D. Weisz,et al.  BigBlueBot: teaching strategies for successful human-agent interactions , 2019, IUI.

[7]  Ayan Banerjee,et al.  On evaluating the effects of feedback for Sign language learning using Explainable AI , 2020, IUI Companion.

[8]  Carrie J. Cai,et al.  The effects of example-based explanations in a machine learning interface , 2019, IUI.

[9]  Vishwa Shah,et al.  Friend, Collaborator, Student, Manager: How Design of an AI-Driven Game Level Editor Affects Creators , 2019, CHI.

[10]  Adam Roegiest,et al.  Dancing with the AI Devil: Investigating the Partnership Between Lawyers and AI , 2020, CHIIR.

[11]  Zhiwei Steven Wu,et al.  Keeping Designers in the Loop: Communicating Inherent Algorithmic Trade-offs Across Multiple Objectives , 2019, Conference on Designing Interactive Systems.

[12]  Nava Tintarev,et al.  Explanations of recommendations , 2007, RecSys '07.

[13]  Margaret M. Burnett,et al.  How the Experts Do It: Assessing and Explaining Agent Behaviors in Real-Time Strategy Games , 2017, CHI.

[14]  L. Longo,et al.  Explainable Artificial Intelligence: a Systematic Review , 2020, ArXiv.

[15]  Amina Adadi,et al.  Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) , 2018, IEEE Access.

[16]  Virpi Roto,et al.  Understanding, scoping and defining user experience: a survey approach , 2009, CHI.

[17]  Heinrich Hußmann,et al.  The Impact of Placebic Explanations on Trust in Intelligent Systems , 2019, CHI Extended Abstracts.

[18]  Mohan S. Kankanhalli,et al.  Trends and Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda , 2018, CHI.

[19]  Donald A. Norman,et al.  User Centered System Design: New Perspectives on Human-Computer Interaction , 1988 .

[20]  Matthew E. Taylor,et al.  Towers of Saliency: A Reinforcement Learning Visualization Using Immersive Environments , 2019, ISS.

[21]  Elizabeth Sklar,et al.  Explanation through Argumentation , 2018, HAI.

[22]  Li Chen,et al.  Adaptive tradeoff explanations in conversational recommenders , 2009, RecSys '09.

[23]  Helen F. Hastie,et al.  MIRIAM: A Multimodal Interface for Explaining the Reasoning Behind Actions of Remote Autonomous Systems , 2018, ICMI.

[24]  Eric D. Ragan,et al.  Investigating the Importance of First Impressions and Explainable AI with Interactive Video Analysis , 2020, CHI Extended Abstracts.

[25]  Martijn Millecamp,et al.  To explain or not to explain: the effects of personal characteristics when explaining music recommendations , 2019, IUI.

[26]  R. Aharonov,et al.  A Survey of the State of Explainable AI for Natural Language Processing , 2020, AACL.

[27]  Kenney Ng,et al.  Interacting with Predictions: Visual Inspection of Black-box Machine Learning Models , 2016, CHI.

[28]  Markus Zanker The influence of knowledgeable explanations on users' perception of a recommender system , 2012, RecSys '12.

[29]  Andrés Lucero,et al.  May AI?: Design Ideation with Cooperative Contextual Bandits , 2019, CHI.

[30]  Rachel K. E. Bellamy,et al.  Explaining models an empirical study of how explanations impact fairness judgment , 2019 .

[31]  Christine T. Wolf Explainability scenarios: towards scenario-based XAI design , 2019, IUI.

[32]  Pearl Brereton,et al.  Performing systematic literature reviews in software engineering , 2006, ICSE.

[33]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[34]  Helen F. Hastie,et al.  Exploring Interaction with Remote Autonomous Systems using Conversational Agents , 2019, Conference on Designing Interactive Systems.

[35]  Chandan Singh,et al.  Definitions, methods, and applications in interpretable machine learning , 2019, Proceedings of the National Academy of Sciences.

[36]  Been Kim,et al.  Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.

[37]  Eric Horvitz,et al.  Principles of mixed-initiative user interfaces , 1999, CHI '99.

[38]  Shi Feng,et al.  What can AI do for me?: evaluating machine learning interpretations in cooperative play , 2019, IUI.

[39]  Andreas Schreiber,et al.  Visualization of neural networks in virtual reality using Unreal Engine , 2018, VRST.

[40]  Ben Shneiderman,et al.  From Human-Human Collaboration to Human-AI Collaboration: Designing AI Systems That Can Work Together with People , 2020, CHI Extended Abstracts.

[41]  Andrew Lim,et al.  Ambiguity-aware AI Assistants for Medical Data Analysis , 2020, CHI.

[42]  Johanna D. Moore,et al.  Requirements for an expert system explanation facility , 1991 .

[43]  Enrico Costanza,et al.  Evaluating saliency map explanations for convolutional neural networks: a user study , 2020, IUI.

[44]  Ben Shneiderman,et al.  Bridging the Gap Between Ethics and Practice , 2020, ACM Trans. Interact. Intell. Syst..

[45]  Alan Cooper,et al.  About Face 3: the essentials of interaction design , 1995 .

[46]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[47]  Juliana Jansen Ferreira,et al.  What Are People Doing About XAI User Experience? A Survey on AI Explainability Research and Practice , 2020, HCI.

[48]  H. Simon Models of Bounded Rationality: Empirically Grounded Economic Reason , 1997 .

[49]  Martin Schuessler,et al.  Minimalistic Explanations: Capturing the Essence of Decisions , 2019, CHI Extended Abstracts.

[50]  Q. Liao,et al.  Questioning the AI: Informing Design Practices for Explainable AI User Experiences , 2020, CHI.

[51]  P. C. Malshe What is this interaction? , 1994, The Journal of the Association of Physicians of India.

[52]  Steven M. Drucker,et al.  Gamut: A Design Probe to Understand How Data Scientists Understand Machine Learning Models , 2019, CHI.

[53]  Pasquale Lops,et al.  Justifying Recommendations through Aspect-based Sentiment Analysis of Users Reviews , 2019, UMAP.

[54]  Bradley Hayes,et al.  Explanation-Based Reward Coaching to Improve Human Performance via Reinforcement Learning , 2019, 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[55]  Tobias Höllerer,et al.  TasteWeights: a visual interactive hybrid recommender system , 2012, RecSys.

[56]  Barry Smyth,et al.  A Live-User Study of Opinionated Explanations for Recommender Systems , 2016, IUI.

[57]  A. Butz,et al.  Mind the (persuasion) gap: contrasting predictions of intelligent DSS with user beliefs to improve interpretability , 2020, EICS.

[58]  Maneesh Agrawala,et al.  Answering Questions about Charts and Generating Visual Explanations , 2020, CHI.

[59]  Subbarao Kambhampati,et al.  Plan Explanations as Model Reconciliation - An Empirical Study , 2018, ArXiv.

[60]  Andrés Páez,et al.  The Pragmatic Turn in Explainable Artificial Intelligence (XAI) , 2019, Minds and Machines.

[61]  Paul Coulton,et al.  The Process of Gaining an AI Legibility Mark , 2020, CHI Extended Abstracts.

[62]  Peter Brusilovsky,et al.  Explaining educational recommendations through a concept-level knowledge visualization , 2019, IUI Companion.

[63]  Bipin Indurkhya,et al.  Persona Prototypes for Improving the Qualitative Evaluation of Recommendation Systems , 2020, UMAP.

[64]  Barry Smyth,et al.  PeerChooser: visual interactive recommendation , 2008, CHI.

[65]  Shlomo Berkovsky,et al.  Revisiting Habitability in Conversational Systems , 2020, CHI Extended Abstracts.

[66]  Jun Zhao,et al.  'It's Reducing a Human Being to a Percentage': Perceptions of Justice in Algorithmic Decisions , 2018, CHI.

[67]  Paul N. Bennett,et al.  Guidelines for Human-AI Interaction , 2019, CHI.

[68]  Per Ola Kristensson,et al.  A Review of User Interface Design for Interactive Machine Learning , 2018, ACM Trans. Interact. Intell. Syst..

[69]  Andrea Bunt,et al.  Are explanations always important?: a study of deployed, low-cost intelligent interactive systems , 2012, IUI '12.

[70]  Haiyi Zhu,et al.  Explaining Decision-Making Algorithms through UI: Strategies to Help Non-Expert Stakeholders , 2019, CHI.

[71]  Sonia Chernova,et al.  Leveraging rationales to improve human task performance , 2020, IUI.

[72]  Ming Yin,et al.  Understanding the Effect of Accuracy on Trust in Machine Learning Models , 2019, CHI.

[73]  Daniel Jurafsky,et al.  Word embeddings quantify 100 years of gender and ethnic stereotypes , 2017, Proceedings of the National Academy of Sciences.

[74]  John Riedl,et al.  Tagsplanations: explaining recommendations using tags , 2009, IUI.

[75]  Chris North,et al.  With respect to what?: simultaneous interaction with dimension reduction and clustering projections , 2020, IUI.

[76]  Jichen Zhu,et al.  Interactive Visualizer to Facilitate Game Designers in Understanding Machine Learning , 2019, CHI Extended Abstracts.

[77]  Aaron Springer,et al.  Progressive Disclosure , 2020, ACM Trans. Interact. Intell. Syst..

[78]  Li Chen,et al.  Explaining Recommendations Based on Feature Sentiments in Product Reviews , 2017, IUI.

[79]  Amit Dhurandhar,et al.  One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques , 2019, ArXiv.

[80]  Heinrich Hußmann,et al.  I Drive - You Trust: Explaining Driving Behavior Of Autonomous Cars , 2019, CHI Extended Abstracts.

[81]  Ivania Donoso-Guzmán,et al.  The effect of explanations and algorithmic accuracy on visual recommender systems of artistic images , 2019, IUI.

[82]  Sarit Kraus,et al.  Providing explanations for recommendations in reciprocal environments , 2018, RecSys.

[83]  Peter Brusilovsky,et al.  Evaluating Visual Explanations for Similarity-Based Recommendations: User Perception and Performance , 2019, UMAP.

[84]  Monica M. C. Schraefel,et al.  Introducing Peripheral Awareness as a Neurological State for Human-computer Integration , 2020, CHI.

[85]  Tim Miller,et al.  Explanation in Artificial Intelligence: Insights from the Social Sciences , 2017, Artif. Intell..

[86]  Ning Wang,et al.  Trust calibration within a human-robot team: Comparing automatically generated explanations , 2016, 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[87]  Jean Scholtz,et al.  How do visual explanations foster end users' appropriate trust in machine learning? , 2020, IUI.

[88]  Mark O. Riedl,et al.  Automated rationale generation: a technique for explainable AI and its effects on human perceptions , 2019, IUI.

[89]  Sotiris Kotsiantis,et al.  Explainable AI: A Review of Machine Learning Interpretability Methods , 2020, Entropy.

[90]  Franco Turini,et al.  A Survey of Methods for Explaining Black Box Models , 2018, ACM Comput. Surv..

[91]  Qian Yang,et al.  Designing Theory-Driven User-Centric Explainable AI , 2019, CHI.

[92]  Eric E. Geiselman,et al.  Intelligent pairing assistant for air operation centers , 2012, IUI '12.

[93]  Antti Oulasvirta,et al.  HCI Research as Problem-Solving , 2016, CHI.

[94]  Anind K. Dey,et al.  Weights of evidence for intelligible smart environments , 2012, UbiComp '12.