Performance of Laser-Based Electronic Devices for Structural Analysis of Amazonian Terra-Firme Forests

Tropical vegetation biomass represents a key component of the carbon stored in global forest ecosystems. Estimates of aboveground biomass commonly rely on measurements of tree size (diameter and height) and then indirectly relate, via allometric relationships and wood density, to biomass sampled from a relatively small number of harvested and weighed trees. Recently, however, novel in situ remote sensing techniques have been proposed, which may provide nondestructive alternative approaches to derive biomass estimates. Nonetheless, we still lack knowledge of the measurement uncertainties, as both the calibration and validation of estimates using different techniques and instruments requires consistent assessment of the underlying errors. To that end, we investigate different approaches estimating the tropical aboveground biomass in situ. We quantify the total and systematic errors among measurements obtained from terrestrial light detection and ranging (LiDAR), hypsometer-based trigonometry, and traditional forest inventory. We show that laser-based estimates of aboveground biomass are in good agreement (< 10% measurement uncertainty) with traditional measurements. However, relative uncertainties vary among the allometric equations based on the vegetation parameters used for parameterization. We report the error metrics for measurements of tree diameter and tree height and discuss the consequences for estimated biomass. Despite methodological differences detected in this study, we conclude that laser-based electronic devices could complement conventional measurement techniques, thereby potentially improving estimates of tropical vegetation biomass.

[1]  Don C. Bragg The sine method as a more accurate height predictor for hardwoods , 2007 .

[2]  Y. A. Hussin,et al.  DERIVATION OF FOREST INVENTORY PARAMETERS FOR CARBON ESTIMATION USING TERRESTRIAL LIDAR , 2016 .

[3]  Mark J. West,et al.  Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias , 1999, Trends in Neurosciences.

[4]  D. A. King,et al.  Allometry and life history of tropical trees , 1996, Journal of Tropical Ecology.

[5]  C. Woodcock,et al.  Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar , 2011 .

[6]  J. Trochta,et al.  3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR , 2017, PloS one.

[7]  Heinrich Spiecker,et al.  SimpleTree —An Efficient Open Source Tool to Build Tree Models from TLS Clouds , 2015 .

[8]  David B. Clark,et al.  GETTING TO THE CANOPY: TREE HEIGHT GROWTH IN A NEOTROPICAL RAIN FOREST , 2001 .

[9]  D. A. King,et al.  Height-diameter allometry of tropical forest trees , 2010 .

[10]  M. Herold,et al.  Nondestructive estimates of above‐ground biomass using terrestrial laser scanning , 2015 .

[11]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[12]  J. Féret,et al.  Extended biomass allometric equations for large mangrove trees from terrestrial LiDAR data , 2016, Trees.

[13]  M I Disney,et al.  Weighing trees with lasers: advances, challenges and opportunities , 2018, Interface Focus.

[14]  Helene C. Muller-Landau,et al.  Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest , 2013 .

[15]  Erkki Oja,et al.  Randomized hough transform (rht) : Basic mech-anisms, algorithms, and computational complexities , 1993 .

[16]  Kevin J. Gaston,et al.  Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar , 2017 .

[17]  S. Hubbell,et al.  SPECIES-AREA AND SPECIES-INDIVIDUAL RELATIONSHIPS FOR TROPICAL TREES : A COMPARISON OF THREE 50-HA PLOTS , 1996 .

[18]  Jean‐François Bastin,et al.  Field methods for sampling tree height for tropical forest biomass estimation , 2018, Methods in ecology and evolution.

[19]  D. A. King,et al.  What controls tropical forest architecture: testing environmental, structural and floristic drivers , 2012 .

[20]  Luiz Antonio Martinelli,et al.  Forest structure and carbon dynamics in Amazonian tropical rain forests , 2004, Oecologia.

[21]  David B. Clark,et al.  Landscape-scale variation in forest structure and biomass in a tropical rain forest , 2000 .

[22]  Philip M. Fearnside,et al.  Wood density in forests of Brazil's 'arc of deforestation': Implications for biomass and flux of carbon from land-use change in Amazonia , 2007 .

[23]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[24]  S. Dittmann,et al.  Applicability of different non-invasive methods for tree mass estimation: A review , 2017 .

[25]  Daniel L. Schmoldt,et al.  A Review of Past Research on Dendrometers , 2000, Forest Science.

[26]  P. Couteron,et al.  Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries , 2016 .

[27]  S. Hubbell,et al.  Spatial patterns in the distribution of tropical tree species. , 2000, Science.

[28]  Jeffrey Q. Chambers,et al.  MEASURING NET PRIMARY PRODUCTION IN FORESTS: CONCEPTS AND FIELD METHODS , 2001 .

[29]  T. R. Feldpausch Interactive comment on “ Tree height integrated into pantropical forest biomass estimates ” by T , 2012 .

[30]  Christina Herrick,et al.  Estimating Tropical Forest Structure Using a Terrestrial Lidar , 2016, PloS one.

[31]  Harm Bartholomeus,et al.  New perspectives on the ecology of tree structure and tree communities through terrestrial laser scanning , 2018, Interface Focus.

[32]  Jan Verbesselt,et al.  Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements , 2015 .

[33]  David Pothier,et al.  Comparison of relative accuracy and time requirement between the caliper, the diameter tape and an electronic tree measuring fork , 1995 .

[34]  Joaquim dos Santos,et al.  Biomassa da parte aérea da vegetação da Floresta Tropical úmida de terra-firme da Amazônia Brasileira , 1998 .

[35]  Philip M. Fearnside,et al.  Tree height in Brazil's 'arc of deforestation' : Shorter trees in south and southwest Amazonia imply lower biomass , 2008 .

[36]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[37]  Bart Kruijt,et al.  Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest , 2004 .

[38]  S. Goetz,et al.  Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps , 2013, Carbon Balance and Management.

[39]  Alan H. Strahler,et al.  Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®) , 2013 .

[40]  Roberta E. Martin,et al.  Targeted carbon conservation at national scales with high-resolution monitoring , 2014, Proceedings of the National Academy of Sciences.

[41]  Aj Bohonak,et al.  Software for reduced major axis regression , 2002 .

[42]  Yadvinder Malhi,et al.  Measuring tropical forest carbon allocation and cycling , 2015 .

[43]  Joslin L. Moore,et al.  The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance , 2005 .

[44]  Jean Pierre Henry Balbaud Ometto,et al.  Amazon forest biomass density maps: tackling the uncertainty in carbon emission estimates , 2014, Climatic Change.

[45]  Zulkepli Majid,et al.  Individual Tree Measurement in Tropical Environment using Terrestrial Laser Scanning , 2015 .

[46]  J. Terborgh,et al.  Tree height integrated into pantropical forest biomass estimates , 2012 .

[47]  Juha Hyyppä,et al.  Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[48]  N. Barbier,et al.  Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach , 2017 .

[49]  Manabu Watanabe,et al.  Efficient field data collection of tropical forest using terrestrial laser scanner , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[50]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[51]  Fabio Meloni,et al.  Direct Measurement of Tree Height Provides Different Results on the Assessment of LiDAR Accuracy , 2016 .

[52]  Gisele Goulart Tavares,et al.  MÉTODOS COMPUTACIONAIS PARA APROXIMAÇÃO DO DIÂMETRO À ALTURA DO PEITO DE ÁRVORES DE REGIÕES DE MANGUE VIA ESCANEAMENTO TRIDIMENSIONAL A LASER , 2017 .

[53]  Sanna Kaasalainen,et al.  Tree structure vs. height from terrestrial laser scanning and quantitative structure models , 2014 .

[54]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[55]  Markku Åkerblom,et al.  Automatic tree species recognition with quantitative structure models , 2017 .

[56]  Kenji Omasa,et al.  Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[57]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[58]  Semida Silveira,et al.  The southern US forest bioenergy encyclopedia : Making scientific knowledge more accessible , 2008 .

[59]  Don C. Bragg,et al.  An improved tree height measurement technique tested on mature southern pines , 2008 .

[60]  Alan H. Strahler,et al.  Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna®) , 2008 .

[61]  N. Coops,et al.  Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests , 2003 .

[62]  M. Keller,et al.  Tree height and tropical forest biomass estimation , 2013 .

[63]  M. Vastaranta,et al.  Terrestrial laser scanning in forest inventories , 2016 .

[64]  P. Raumonen,et al.  Massive-Scale Tree Modelling from Tls Data , 2015 .

[65]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[66]  Jorge Ahumada,et al.  The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests. , 2017, The Science of the total environment.

[67]  David L.B. Jupp,et al.  Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint , 2011 .

[68]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[69]  G. Asner,et al.  Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric , 2014 .

[70]  Jin Liu,et al.  Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data , 2016, Remote. Sens..

[71]  C. Hopkinson,et al.  Assessing forest metrics with a ground-based scanning lidar , 2004 .

[72]  Norman A. Bourg,et al.  CTFS‐ForestGEO: a worldwide network monitoring forests in an era of global change , 2015, Global change biology.

[73]  Yadvinder Malhi,et al.  Application of terrestrial LiDAR and modelling of tree branching structure for plant-scaling models in tropical forest trees , 2015 .

[74]  Pavel Kabat,et al.  Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site , 2002 .

[75]  Mathias Disney,et al.  Extracting individual trees from lidar point clouds using treeseg , 2018, Methods in Ecology and Evolution.

[76]  M. Herold,et al.  Data acquisition considerations for Terrestrial Laser Scanning of forest plots , 2017 .

[77]  Jasmine Muir,et al.  Evaluation of the Range Accuracy and the Radiometric Calibration of Multiple Terrestrial Laser Scanning Instruments for Data Interoperability , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[78]  Nikolai I. Chernov,et al.  Least Squares Fitting of Circles , 2005, Journal of Mathematical Imaging and Vision.

[79]  David Kenfack,et al.  Global importance of large‐diameter trees , 2018 .

[80]  K. Kanniah,et al.  Non-Destructive, Laser-Based Individual Tree Aboveground Biomass Estimation in a Tropical Rainforest , 2017 .

[81]  Richard Condit,et al.  Error propagation and scaling for tropical forest biomass estimates. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[82]  C. Schmullius,et al.  Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna , 2016 .

[83]  Jakub Stoklosa,et al.  Terrestrial laser scanning reveals below-canopy bat trait relationships with forest structure , 2017 .

[84]  Johan Holmgren,et al.  Tree Stem and Height Measurements using Terrestrial Laser Scanning and the RANSAC Algorithm , 2014, Remote. Sens..

[85]  F. M. Danson,et al.  Terrestrial Laser Scanning for Plot-Scale Forest Measurement , 2015, Current Forestry Reports.

[86]  G. Asner,et al.  An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR , 2018 .

[87]  M. Herold,et al.  Estimation of above‐ground biomass of large tropical trees with terrestrial LiDAR , 2017 .

[88]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[89]  M. Fournier,et al.  The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges , 2011, Annals of Forest Science.

[90]  Yadvinder Malhi,et al.  Plant Structure-Function Relationships and Woody Tissue Respiration: Upscaling to Forests from Laser-Derived Measurements , 2017 .

[91]  Juha Hyyppä,et al.  Individual tree biomass estimation using terrestrial laser scanning , 2013 .

[92]  Mengzhen Kang,et al.  Analyzing the canopy light distribution among different poplar genotypes using terrestrial laser scanner and the GreenLab model , 2016, 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA).

[93]  Carlos Henrique Souza Celes,et al.  Tree Climbing Techniques and Volume Equations for Eschweilera (Matá-Matá), a Hyperdominant Genus in the Amazon Forest , 2017 .

[94]  P. Radtke,et al.  Detailed Stem Measurements of Standing Trees from Ground-Based Scanning Lidar , 2006, Forest Science.

[95]  Shengli Tao,et al.  Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data , 2015 .

[96]  J. Illian,et al.  Re-evaluation of individual diameter : height allometric models to improve biomass estimation of tropical trees. , 2016, Ecological applications : a publication of the Ecological Society of America.

[97]  Richard Condit,et al.  Tropical Forest Census Plots , 1998, Environmental Intelligence Unit.

[98]  O. Phillips,et al.  The importance of crown dimensions to improve tropical tree biomass estimates. , 2014, Ecological applications : a publication of the Ecological Society of America.