Development of an automatic pest monitoring system using a deep learning model of DPeNet

[1]  Xinting Yang,et al.  Classification and detection of insects from field images using deep learning for smart pest management: A systematic review , 2021, Ecol. Informatics.

[2]  Xinting Yang,et al.  Field detection of tiny pests from sticky trap images using deep learning in agricultural greenhouse , 2021, Comput. Electron. Agric..

[3]  Rafael Rieder,et al.  Automatic identification of insects from digital images: A survey , 2020, Comput. Electron. Agric..

[4]  Hemerson Pistori,et al.  A Deep-Learning Approach for Automatic Counting of Soybean Insect Pests , 2020, IEEE Geoscience and Remote Sensing Letters.

[5]  Rajesh Elara Mohan,et al.  Remote Insects Trap Monitoring System Using Deep Learning Framework and IoT , 2020, Sensors.

[6]  Rafael Rieder,et al.  A method for counting and classifying aphids using computer vision , 2020, Comput. Electron. Agric..

[7]  Qingxuan Jia,et al.  Multi-scale detection of stored-grain insects for intelligent monitoring , 2020, Comput. Electron. Agric..

[8]  Xiaoguang Zhou,et al.  Detection and Identification of Stored-Grain Insects Using Deep Learning: A More Effective Neural Network , 2020, IEEE Access.

[9]  Digvir S. Jayas,et al.  A low-resolution image restoration classifier network to identify stored-grain insects from images of sticky boards , 2019, Comput. Electron. Agric..

[10]  Qingxuan Jia,et al.  Construction of a Dataset of Stored-grain Insects Images for Intelligent Monitoring , 2019, Applied Engineering in Agriculture.

[11]  Nachiket Kotwaliwale,et al.  Techniques for insect detection in stored food grains: An overview , 2018, Food Control.

[12]  Tao Wang,et al.  Automatic Segmentation and Counting of Aphid Nymphs on Leaves Using Convolutional Neural Networks , 2018, Agronomy.

[13]  Andreas Kamilaris,et al.  Deep learning in agriculture: A survey , 2018, Comput. Electron. Agric..

[14]  Yufeng Shen,et al.  Detection of stored-grain insects using deep learning , 2018, Comput. Electron. Agric..

[15]  Tao Wang,et al.  Fast Detection of Striped Stem-Borer (Chilo suppressalis Walker) Infested Rice Seedling Based on Visible/Near-Infrared Hyperspectral Imaging System , 2017, Sensors.

[16]  Saeid Minaei,et al.  Vision-based pest detection based on SVM classification method , 2017, Comput. Electron. Agric..

[17]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[18]  Haiyang Zhou,et al.  A smart-vision algorithm for counting whiteflies and thrips on sticky traps using two-dimensional Fourier transform spectrum , 2017 .

[19]  Sreekala G. Bajwa,et al.  Detection of soybean aphids in a greenhouse using an image processing technique , 2017, Comput. Electron. Agric..

[20]  Muhammad Hafeez Javed,et al.  K-means Based Automatic Pests Detection and Classification for Pesticides Spraying , 2017 .

[21]  Tae-Soo Chon,et al.  Automatic identification and counting of small size pests in greenhouse conditions with low computational cost , 2015, Ecol. Informatics.

[22]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[24]  M. Hommes,et al.  Yellow traps reloaded: what is the benefit for decision making in practice? , 2014, Journal of Pest Science.

[25]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[26]  Tae-Soo Chon,et al.  Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis , 2007 .