Resonant coupled-cavity effects in VCSELs with annular ring contacts

The role of metal apertures in the mechanism of lateral mode confinement in vertical-cavity surface-emitting lasers (VCSELs) is clarified by means of a detailed effective-frequency-method analysis of an oxide-confined VCSEL structure with the radius of the oxide window exceeding that of the metal aperture. Ring metal contact layer on top of the VCSEL structure is shown to be able to change the conditions for the lateral waveguiding in VCSELs by significantly modifying the local resonant properties of the VCSEL cavity. The resonant effects are demonstrated in the longitudinal coupled-cavity system consisting of the designed laser cavity, determined by the lower and top DBRs, and a very short cavity formed by the top DBR and semiconductor-metal interface. The conditions for higher-order lateral mode suppression using metal apertures are established.

[1]  D. Deppe,et al.  Cavity-induced antiguiding in a selectively oxidized vertical-cavity surface-emitting laser , 1998, IEEE Photonics Technology Letters.

[2]  H. J. Unold,et al.  Long monolithic cavity VCSELs for high singlemode output power , 2001 .

[3]  H. J. Unold,et al.  Large-area single-mode VCSELs and the self-aligned surface relief , 2001 .

[4]  R. Baets,et al.  Comparison of optical VCSEL models on the simulation of oxide-confined devices , 2001 .

[5]  Theory of the mode stabilization mechanism in concave-micromirror-capped vertical-cavity surface-emitting lasers , 2003 .

[6]  J. Zhang Single mode power and modal behaviour in buried vertical-cavity surface-emitting lasers , 1995 .

[7]  W. Nakwaski,et al.  Temperature and thickness dependence of steam oxidation of AlAs in cylindrical mesa structures , 2001, IEEE Photonics Technology Letters.

[8]  A. Allerman,et al.  Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation , 2001, IEEE Photonics Technology Letters.

[9]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[10]  Hans Wenzel,et al.  The effective frequency method in the analysis of vertical-cavity surface-emitting lasers , 1997 .

[11]  K. Kojima,et al.  Transverse mode control of vertical-cavity top-surface-emitting lasers , 1993, IEEE Photonics Technology Letters.

[12]  I. White,et al.  Mode control in vertical-cavity surface-emitting lasers by post-processing using focused ion-beam etching , 1997, IEEE Photonics Technology Letters.

[13]  R. Synowicki,et al.  Optical constants of (Al0.98Ga0.02)xOy native oxides , 1998 .

[14]  A. Larsson,et al.  Single-mode power dependence on surface relief size for mode-stabilized oxide-confined vertical-cavity surface-emitting lasers , 2000, IEEE Photonics Technology Letters.

[15]  C. Caneau,et al.  Single-mode, passive antiguide vertical cavity surface emitting laser , 1995 .

[16]  S. Shinada,et al.  Multi-oxide layer structure for single-mode operation in vertical-cavity surface-emitting lasers , 2000, IEEE Photonics Technology Letters.

[17]  H. J. Unold,et al.  Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory , 2003 .

[18]  G. R. Hadley,et al.  High power single transverse mode selectively oxidized VCSELs , 1997, 1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application.

[19]  B. C. Koh,et al.  Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation , 2002 .

[20]  Marek Osinski,et al.  Design of InGaN/GaN/AlGaN VCSELs using the effective frequency method , 1999, Photonics West.

[21]  M. Kicherer,et al.  Improving single-mode VCSEL performance by introducing a long monolithic cavity , 2000, IEEE Photonics Technology Letters.

[22]  H. J. Unold,et al.  Increased-area oxidised single-fundamental mode VCSEL with self-aligned shallow etched surface relief , 1999 .

[23]  H. Unold,et al.  Theoretical interpretation of the enhanced single-mode stability in extended cavity VCSELs , 2002 .

[24]  S. Yu,et al.  Title Comprehensive modeling of diffused quantum-well vertical-cavity surface-emitting lasers , 1998 .

[25]  James R. Leger,et al.  Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering , 1997 .

[26]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[27]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[28]  Rainer Michalzik,et al.  Singlemode output power enhancement of InGaAs VCSELs by reduced spatial hole burning via surface etching , 2001 .

[29]  H. J. Unold,et al.  Large-area single-mode selectively oxidized VCSELs: approaches and experimental , 2000, Photonics West - Optoelectronic Materials and Devices.

[30]  T. Nakamura,et al.  Single-transverse-mode 3.4-mW emission of oxide-confined 780-nm VCSELs , 1999, IEEE Photonics Technology Letters.

[31]  Johan S. Gustavsson,et al.  Numerical optimization of the single fundamental mode output from a surface modified vertical-cavity surface-emitting laser , 2001 .

[32]  A. Allerman,et al.  Lithographically-defined gain apertures within selectively oxidized VCSELs , 2000, CLEO 2000.