More Discriminants with the Brezing-Weng Method
暂无分享,去创建一个
[1] Kristin E. Lauter,et al. Computing Hilbert Class Polynomials , 2008, ANTS.
[2] Alfred Menezes,et al. Reducing elliptic curve logarithms to logarithms in a finite field , 1991, STOC '91.
[3] K. Williams,et al. Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.
[4] Matthew K. Franklin,et al. Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.
[5] S. Galbraith. Constructing Isogenies between Elliptic Curves Over Finite Fields , 1999 .
[6] Andreas Enge,et al. The complexity of class polynomial computation via floating point approximations , 2006, Math. Comput..
[7] Annegret Weng,et al. Elliptic Curves Suitable for Pairing Based Cryptography , 2005, Des. Codes Cryptogr..
[8] Roger A. Horn,et al. Primes represented by irreducible polynomials in one variable , 1965 .
[9] Michael Scott,et al. A Taxonomy of Pairing-Friendly Elliptic Curves , 2010, Journal of Cryptology.
[10] H. Heilbronn. ON THE CLASS-NUMBER IN IMAGINARY QUADRATIC FIELDS , 1934 .
[11] C. Siegel,et al. Über die Classenzahl quadratischer Zahlkörper , 1935 .
[12] Paulo S. L. M. Barreto,et al. Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.
[13] Alfred Menezes,et al. Reducing elliptic curve logarithms to logarithms in a finite field , 1993, IEEE Trans. Inf. Theory.
[14] S. Lang,et al. Abelian varieties over finite fields , 2005 .
[15] W. Sierpinski,et al. Sur certaines hypothèses concernant les nombres premiers , 1958 .
[16] Antoine Joux,et al. A One Round Protocol for Tripartite Diffie–Hellman , 2000, Journal of Cryptology.
[17] M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .