A Statistical Evaluation of GOES Cloud-Top Properties for Nowcasting Convective Initiation

Abstract The goal of this project is to validate and extend a study by Mecikalski and Bedka that capitalized on information the Geostationary Operational Environmental Satellite (GOES) instruments provide for nowcasting (i.e., 0–1-h forecasting) convective initiation through the real-time monitoring of cloud-top properties for moving cumuli. Convective initiation (CI) is defined as the first occurrence of a ≥35-dBZ radar echo from a cumuliform cloud. Mecikalski and Bedka’s study concluded that eight infrared GOES-based “interest fields” of growing cumulus clouds should be monitored over 15–30-min intervals toward predicting CI: the transition of cloud-top brightness temperature to below 0°C, cloud-top cooling rates, and instantaneous and time trends of channel differences 6.5–10.7 and 13.3–10.7 μm. The study results are as follows: 1) measures of accuracy and uncertainty of Mecikalski and Bedka’s algorithm via commonly used skill scoring procedures, and 2) a report on the relative importance of each inter...

[1]  Patrick Minnis,et al.  Aviation Applications for Satellite-Based Observations of Cloud Properties, Convection Initiation, In-Flight Icing, Turbulence, and Volcanic Ash , 2007 .

[2]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[3]  W. Menzel,et al.  Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites , 1994 .

[4]  J. Mecikalski,et al.  Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery , 2004 .

[5]  I. Jolliffe Principal Component Analysis , 2002 .

[6]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[7]  K. T. Calden Tactical 0-2 Hour Convective Weather Forecasts for FAA , 2004 .

[8]  Steven A. Rutledge,et al.  Nowcasting Storm Initiation and Growth Using GOES-8 and WSR-88D Data , 2003 .

[9]  Juanzhen Sun,et al.  Nowcasting Thunderstorms: A Status Report , 1998 .

[10]  P. Heidke,et al.  Berechnung Des Erfolges Und Der Güte Der Windstärkevorhersagen Im Sturmwarnungsdienst , 1926 .

[11]  Chris G. Collier,et al.  GANDOLF: a system for generating automated nowcasts of convective precipitation , 2000 .

[12]  Guy Kelman,et al.  Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase , 2008 .

[13]  R. Preisendorfer,et al.  Principal Component Analysis in Meteorology and Oceanography , 1988 .

[14]  Johannes Schmetz,et al.  Monitoring deep convection and convective overshooting with METEOSAT , 1997 .

[15]  John T. Young,et al.  The Man computer Interactive Data Access System: 25 Years of Interactive Processing , 1999 .

[16]  High-Resolution Satellite Imagery for Mesoscale Meteorological Studies , 1994 .

[17]  K. Browning Airflow and Precipitation Trajectories Within Severe Local Storms Which Travel to the Right of the Winds , 1964 .

[18]  J. Mecikalski,et al.  Application of Satellite-Derived Atmospheric Motion Vectors for Estimating Mesoscale Flows , 2005 .

[19]  松山 洋 「Statistical Methods in the Atmospheric Sciences(2nd edition), International Geophysics Series 91」, Daniel S. Wilks著, Academic Press, 2005年11月, 648頁, $94.95, ISBN978-0-12-751966-1(本だな) , 2010 .

[20]  Kristopher M. Bedka,et al.  Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering , 2008 .

[21]  Arthur Witt,et al.  The Storm Cell Identification and Tracking Algorithm: An Enhanced WSR-88D Algorithm , 1998 .

[22]  Terri Betancourt,et al.  NCAR Auto-Nowcast System , 2003 .