Processes and continuous change in a SAT-based planner

The TM-LPSAT planner can construct plans in domains containing atomic actions and durative actions; events and processes; discrete, real-valued, and interval-valued fluents; reusable resources, both numeric and interval-valued; and continuous linear change to quantities. It works in three stages. In the first stage, a representation of the domain and problem in an extended version of PDDL+ is compiled into a system of Boolean combinations of propositional atoms and linear constraints over numeric variables. In the second stage, a SAT-based arithmetic constraint solver, such as LPSAT or MathSAT, is used to find a solution to the system of constraints. In the third stage, a correct plan is extracted from this solution. We discuss the structure of the planner and show how planning with time and metric quantities is compiled into a system of constraints. The proofs of soundness and completeness over a substantial subset of our extended version of PDDL+ are presented.

[1]  Steven A. Vere,et al.  Planning in Time: Windows and Durations for Activities and Goals , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  N. Shinkura,et al.  Pushing the envelope: chromatin boundaries at the nuclear pore. , 2002, Molecular cell.

[3]  Ivan Serina,et al.  Planning Through Stochastic Local Search and Temporal Action Graphs in LPG , 2003, J. Artif. Intell. Res..

[4]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[5]  Daniel S. Weld,et al.  The LPSAT Engine & Its Application to Resource Planning , 1999, IJCAI.

[6]  Hector Geffner,et al.  Branching Matters: Alternative Branching in Graphplan , 2003, ICAPS.

[7]  J. Penberthy Planning with continuous change , 1993 .

[8]  Drew McDermott Reasoning about Autonomous Processes in an Estimated-Regression Planner , 2003, ICAPS.

[9]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[10]  Gary G. Hendrix,et al.  Modeling Simultaneous Actions and Continuous Processes , 1989, Artif. Intell..

[11]  A. Cimatti,et al.  The MathSAT Solver — a progress report , 2004 .

[12]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[13]  Ernest Davis,et al.  Representations of commonsense knowledge , 2014, notThenot Morgan Kaufmann series in representation and reasoning.

[14]  Alfonso Gerevini,et al.  Temporal Planning through Mixed Integer Programming: A Preliminary Report , 2002, CP.

[15]  David P. Miller,et al.  Hierarchical planning involving deadlines, travel time, and resources , 1988, Comput. Intell..

[16]  John N. Hooker,et al.  Logic-Based Methods for Optimization , 1994, PPCP.

[17]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[18]  Jussi Rintanen,et al.  A Planning Algorithm not based on Directional Search , 1998, KR.

[19]  Vijay Karamcheti,et al.  Constrained component deployment in wide-area networks using AI planning techniques , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[20]  Ronen I. Brafman,et al.  A simplifier for propositional formulas with many binary clauses , 2001, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[21]  Sharad Malik,et al.  The Quest for Efficient Boolean Satisfiability Solvers , 2002, CAV.

[22]  Enrico Giunchiglia,et al.  Act, and the Rest Will Follow: Exploiting Determinism in Planning as Satisfiability , 1998, AAAI/IAAI.

[23]  Maria Fox,et al.  The Automatic Inference of State Invariants in TIM , 1998, J. Artif. Intell. Res..

[24]  M. Fox,et al.  The 3rd International Planning Competition: Results and Analysis , 2003, J. Artif. Intell. Res..

[25]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[26]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[27]  David Chapman,et al.  Planning for Conjunctive Goals , 1987, Artif. Intell..

[28]  Lenhart K. Schubert,et al.  Inferring State Constraints for Domain-Independent Planning , 1998, AAAI/IAAI.

[29]  Brian Drabble,et al.  EXCALIBUR: A Program for Planning and Reasoning with Processes , 1993, Artif. Intell..

[30]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[31]  Sergey Berezin,et al.  CVC Lite: A New Implementation of the Cooperating Validity Checker Category B , 2004, CAV.

[32]  Henry Kautz,et al.  Pushing the envelope: planning , 1996 .

[33]  David E. Smith,et al.  Temporal Planning with Mutual Exclusion Reasoning , 1999, IJCAI.

[34]  D. McDermott,et al.  The Formal Semantics of Processes in PDDL , 2003 .

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[37]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[38]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[39]  Subbarao Kambhampati,et al.  Sapa: A Multi-objective Metric Temporal Planner , 2003, J. Artif. Intell. Res..

[40]  Piergiorgio Bertoli,et al.  A SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions , 2002, CADE.

[41]  E. Davis,et al.  TM-LPSAT: Encoding Temporal Metric Planning in Continuous Time , 2004 .

[42]  Maria Fox,et al.  Exploiting a Graphplan Framework in Temporal Planning , 2003, ICAPS.

[43]  Marco Bozzano,et al.  MathSAT: Tight Integration of SAT and Mathematical Decision Procedures , 2005, Journal of Automated Reasoning.

[44]  David E. Wilkins,et al.  Can AI planners solve practical problems? , 1990, Comput. Intell..

[45]  F. R. A. Hopgood,et al.  Machine Intelligence 5 , 1971, The Mathematical Gazette.

[46]  Marco Bozzano,et al.  Verifying Industrial Hybrid Systems with MathSAT , 2005, BMC@CAV.

[47]  Reid Simmons,et al.  Combining Associational and Causal Reasoning to Solve Interpretation and Planning Problems , 1988 .

[48]  Daniel S. Weld,et al.  Combining linear programming and satisfiability solving for resource planning , 2001, The Knowledge Engineering Review.

[49]  Ernest Davis,et al.  Axiomatizing Qualitative Process Theory , 2011, KR.

[50]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artif. Intell..

[51]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[52]  Maria Fox,et al.  An examination of resources in planning , 2000 .

[53]  Jussi Rintanen Evaluation Strategies for Planning as Satisfiability , 2004, ECAI.

[54]  Michael D. Ernst,et al.  Automatic SAT-Compilation of Planning Problems , 1997, IJCAI.

[55]  Ji-Ae Shin,et al.  Continuous Time in a SAT-Based Planner , 2004, AAAI.

[56]  Fausto Giunchiglia,et al.  SAT-Based Decision Procedures for Automated Reasoning: A Unifying Perspective , 2005, Mechanizing Mathematical Reasoning.

[57]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[58]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[59]  Alfredo Milani,et al.  DPPlan: An Algorithm for Fast Solutions Extraction from a Planning Graph , 2000, AIPS.

[60]  Greg J. Badros,et al.  The Cassowary Linear Arithmetic Constraint Solving Algorithm: Interface and Implementation , 1999 .

[61]  Daniel S. Weld,et al.  Temporal Planning with Continuous Change , 1994, AAAI.

[62]  Amol Dattatraya Mali Encoding Temporal Planning as CSP , 2002, AIPS Workshop on Planning for Temporal Domains.

[63]  Amol Dattatraya Mali On temporal planning as CSP , 2002, 14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings..