Fractal Tilings Based on Successive Adjacent Substitution Rule
暂无分享,去创建一个
Tao Yu | Kwok Wai Chung | Peichang Ouyang | Xiaosong Tang | Xiaosong Tang | K. Chung | Tao Yu | Peichang Ouyang
[1] Peichang Ouyang,et al. Beautiful Math, Part 2: Aesthetic Patterns Based on Fractal Tilings , 2014, IEEE Computer Graphics and Applications.
[2] de Ng Dick Bruijn. Dualization of multigrids , 1986 .
[3] Joshua E. S. Socolar,et al. An aperiodic hexagonal tile , 2010, J. Comb. Theory A.
[4] Hartmut Jürgens,et al. Chaos and Fractals: New Frontiers of Science , 1992 .
[5] Robert W. Fathauer,et al. Fractal tilings based on v-shaped prototiles , 2002, Comput. Graph..
[6] Natalie Priebe Frank,et al. A Fractal Version of the Pinwheel Tiling , 2010, 1001.2203.
[7] Kwok-Wai Chung,et al. Automatic generation of aesthetic patterns on fractal tilings by means of dynamical systems , 2005 .
[8] Chaim Goodman-Strauss,et al. A Small Aperiodic Set of Planar Tiles , 1999, Eur. J. Comb..
[9] Christoph Bandt,et al. Self-similar sets. V. Integer matrices and fractal tilings of ⁿ , 1991 .
[10] Jean Savinien,et al. K-theory of the chair tiling via AF-algebras , 2015, 1505.05009.
[11] Robert Fathauer. Extending Escher’s Recognizable-Motif Tilings to Multiple-Solution Tilings and Fractal Tilings , 2003 .
[12] Peter McMullen,et al. Duality, sections and projections of certain Euclidean tilings , 1994 .
[13] Robert W. Fathauer,et al. Fractal tilings based on kite- and dart-shaped prototiles , 2001, Comput. Graph..
[14] Natalie Priebe Frank,et al. Fractal dual substitution tilings , 2014, 1410.4708.
[15] Peichang Ouyang,et al. BOUNDARY DIMENSIONS OF FRACTAL TILINGS , 2015 .