Integral representations of solutions of periodic elliptic equations

The paper discusses relations between the structure of the complex Fermi surface below the spectrum of a second order periodic elliptic equation and integral representations of certain classes of its solutions. These integral representations are analogs of those previously obtained by S. Agmon, S. Helgason, and other authors for solutions of the Helmholtz equation (i.e., for generalized eigenfunctions of Laplace operator). In a previous joint work with Y. Pinchover we described all solutions that can be represented as integrals of positive Bloch solutions over the imaginary Fermi surface, with a hyperfunction as a "measure". Here we characterize the class of solutions such that the corresponding hyperfunction is a distribution on the Fermi surface.

[1]  P. Kuchment,et al.  On the Structure of Eigenfunctions Corresponding to Embedded Eigenvalues of Locally Perturbed Periodic Graph Operators , 2005, math-ph/0511084.

[2]  P. Kuchment,et al.  Liouville theorems and spectral edge behavior on abelian coverings of compact manifolds , 2005, math-ph/0503010.

[3]  P. Kuchment,et al.  Integral representations and Liouville theorems for solutions of periodic elliptic equations , 2000, math/0007051.

[4]  George A. Elliott,et al.  K-theory , 1999 .

[5]  P. Kuchment,et al.  On absence of embedded eigenvalues for schrÖdinger operators with perturbed periodic potentials , 1999, math-ph/9904016.

[6]  R. Pinsky Second Order Elliptic Operators with Periodic Coefficients: Criticality Theory, Perturbations, and Positive Harmonic Functions , 1995 .

[7]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[8]  H. Knörrer,et al.  The geometry of algebraic Fermi curves , 1992 .

[9]  H. Knörrer,et al.  A directional compactification of the complex Bloch variety , 1990 .

[10]  J. Chaumat,et al.  Caracterisation et proprietes des ensembles localement pics de $A^{\infty}(D)$. , 1980 .

[11]  E. Love Linear differential equations with constant coefficients , 1977 .

[12]  P. Kuchment,et al.  BANACH BUNDLES AND LINEAR OPERATORS , 1975 .

[13]  S. Helgason Eigenspaces of the Laplacian; integral representations and irreducibility , 1974 .

[14]  V. A. Kondrat'ev,et al.  On Positive Solutions of Elliptic Equations , 1971 .

[15]  E. Bishop Analytic functions with values in a Frechet space , 1962 .

[16]  Idempotent Semimodules,et al.  Analysis of Operators on , 2007 .

[17]  D. Vvedensky,et al.  Solid State Physics , 2000 .

[18]  S. Agmon Representation theorems for solutions of the Helmholtz equation on R , 1999 .

[19]  P. Kuchment,et al.  On Embedded Eigenvalues of Perturbed Periodic Schrödinger Operators , 1998 .

[20]  Y. Pinchover,et al.  Manifolds With Group Actions and Elliptic Operators , 1995 .

[21]  A. I. Komech,et al.  Linear Partial Differential Equations with Constant Coefficients , 1994 .

[22]  V. Palamodov,et al.  Harmonic synthesis of solutions of elliptic equation with periodic coefficients , 1993 .

[23]  Shmuel Agmon,et al.  A Representation Theorem for Solutions of the Helmholtz Equation and Resolvent Estimates for The Laplacian , 1990 .

[24]  H. Knörrer,et al.  A directional compactification of the complex Fermi surface and isospectrality , 1990 .

[25]  S. Agmon On Positive Solutions of Elliptic Equations with Periodic Coefficients in N, Spectral Results and Extensions to Elliptic Operators on Riemannian Manifolds , 1984 .

[26]  S. Helgason Groups and geometric analysis , 1984 .

[27]  Mitsuo Morimoto Analytic functionals on the sphere and their Fourier-Borel transformations , 1983 .

[28]  J. Chaumat,et al.  Ensembles pics pour $A^\infty (D)$ , 1979 .

[29]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[30]  M. Hashizume,et al.  An integral representation of an eigenfunction of the Laplacian on the Euclidean space , 1972 .

[31]  L. Ehrenpreis Fourier analysis in several complex variables , 1970 .

[32]  Bernard Malgrange,et al.  Ideals of differentiable functions , 1966 .

[33]  S. Łojasiewicz Sur le problème de la division , 1959 .

[34]  B. Malgrange Division des distributions , 1958 .