The Fibonacci Word fractal

The Fibonacci Word Fractal is a self-similar fractal curve based on the Fibonacci word through a simple and interesting drawing rule. This fractal reveals three types of patterns and a great number of self-similarities. We show a strong link with the Fibonacci numbers, prove several properties and conjecture others, we calculate its Hausdorff Dimension. Among various modes of construction, we define a word over a 3-letter alphabet that can generate a whole family of curves converging to the Fibonacci Word Fractal. We investigate the sturmian words that produce variants of such a pattern. We describe an interesting dynamical process that, also, creates that pattern. Finally, we generalize to any angle.

[1]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[2]  Xavier Droubay,et al.  Palindromes in the Fibonacci Word , 1995, Inf. Process. Lett..

[3]  Jean Berstel,et al.  On the Index of Sturmian Words , 1999, Jewels are Forever.

[4]  Filippo Mignosi,et al.  Morphismes sturmiens et règles de Rauzy , 1993 .

[5]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[6]  Jean Berstel,et al.  Recent Results on Sturmian Words , 1995, Developments in Language Theory.

[7]  Przemyslaw Prusinkiewicz,et al.  Graphical applications of L-systems , 1986 .

[8]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[9]  J.-P. Allouche,et al.  Automata and automatic sequences , 2022, ArXiv.

[10]  J. Berstel,et al.  Morphismes de Sturm , 1994 .

[11]  Zhi-Xiong Wen,et al.  Some Properties of the Singular Words of the Fibonacci Word , 1994, Eur. J. Comb..

[12]  Filippo Mignosi,et al.  Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..