Metaplex Networks: Influence of the Exo-Endo Structure of Complex Systems on Diffusion

Complex networks represent the global behavior of complex systems in terms of interacting subcomponents. This article introduces metaplex networks, which include the internal structure, dynamics and function of these subcomponents, and analyzes their interplay with the network structure for the global dynamics of the system. We illustrate the use of this framework for diffusion and superdiffusion in metaplexes whose nodes are domains in $\mathbb{R}^n$. Long-range hopping leads to superdiffusive behaviour across the whole metaplex, and it survives independently of the internal structure. The global diffusion dynamics, however, strongly reflects the geometry of the nodes, the nature of the coupling, as well as the internal diffusion processes. We provide analytical and numerical results to shed light on this interaction of internal and external dynamics.

[1]  Giorgio Gallo,et al.  Directed Hypergraphs and Applications , 1993, Discret. Appl. Math..

[2]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[3]  Klaus Obermayer,et al.  From in silico astrocyte cell models to neuron-astrocyte network models: A review , 2018, Brain Research Bulletin.

[4]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[5]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[6]  S. Finkbeiner,et al.  Ca2+ waves in astrocytes. , 1991, Cell calcium.

[7]  Charles Nicholson,et al.  Diffusion and related transport mechanisms in brain tissue , 2001 .

[8]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[9]  L. Xia,et al.  Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure , 2010, Physical biology.

[10]  T F Nonnenmacher,et al.  Anomalous diffusion of water in biological tissues. , 1996, Biophysical journal.

[11]  Timothy H. Keitt,et al.  LANDSCAPE CONNECTIVITY: A GRAPH‐THEORETIC PERSPECTIVE , 2001 .

[12]  Ernesto Estrada Path Laplacian matrices: Introduction and application to the analysis of consensus in networks , 2012 .

[13]  Ernesto Estrada,et al.  Centralities in Simplicial Complexes , 2017, Journal of theoretical biology.

[14]  S. Jones,et al.  Principles of protein-protein interactions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Havlin,et al.  Climate networks around the globe are significantly affected by El Niño. , 2008, Physical review letters.

[16]  E. Ouhabaz Analysis of Heat Equations on Domains , 2004 .

[17]  M. Newman Analysis of weighted networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Richard Courant,et al.  Methods of Mathematical Physics II: Partial Di erential Equations , 1963 .

[19]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[20]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[21]  Ramon Grima,et al.  Macromolecular crowding directs the motion of small molecules inside cells , 2017, Journal of The Royal Society Interface.

[22]  M. Ferraro,et al.  The Foraging Brain: Evidence of Lévy Dynamics in Brain Networks , 2016, bioRxiv.

[23]  Thomas H. Parker,et al.  What is π , 1991 .

[24]  H. Osborn,et al.  A DeWitt expansion of the heat kernel for manifolds with a boundary , 1991 .

[25]  K. Luby-Phelps,et al.  Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. , 2000, International review of cytology.

[26]  C. Tretter Spectral Theory Of Block Operator Matrices And Applications , 2008 .

[27]  A. Pereda,et al.  Electrical synapses and their functional interactions with chemical synapses , 2014, Nature Reviews Neuroscience.

[28]  G. Grubb,et al.  Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators , 2013, 1302.6529.

[29]  M. Endo,et al.  Calcium Induced Release of Calcium from the Sarcoplasmic Reticulum of Skinned Skeletal Muscle Fibres , 1970, Nature.

[30]  M. Porter What Is... a Multilayer Network? , 2018, Notices of the American Mathematical Society.

[31]  Guido Caldarelli,et al.  Hypergraph topological quantities for tagged social networks , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Conrado J. Pérez Vicente,et al.  Diffusion dynamics on multiplex networks , 2012, Physical review letters.

[33]  S. Goldman,et al.  New roles for astrocytes: Redefining the functional architecture of the brain , 2003, Trends in Neurosciences.

[34]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[35]  A. Fabiato,et al.  Excitation‐Contraction Coupling of Isolated Cardiac Fibers with Disrupted or Closed Sarcolemmas: CALCIUM‐DEPENDENT CYCLIC AND TONIC CONTRACTIONS , 1972, Circulation research.

[36]  R. Dingledine,et al.  Astrocytes in the Epileptic Brain , 2008, Neuron.

[37]  Heiko Gimperlein,et al.  Interacting Particles with Lévy Strategies: Limits of Transport Equations for Swarm Robotic Systems , 2018, SIAM J. Appl. Math..

[38]  Xavier Ros-Oton,et al.  Nonlocal problems with Neumann boundary conditions , 2014, 1407.3313.

[39]  H. Lieu THE PHYSICS OF TRAFFIC: EMPIRICAL FREEWAY PATTERN FEATURES, ENGINEERING APPLICATIONS, AND THEORY , 2005 .

[40]  G. Perea,et al.  Tripartite synapses: astrocytes process and control synaptic information , 2009, Trends in Neurosciences.

[41]  Carlos Armando Duarte,et al.  Transient analysis of sharp thermal gradients using coarse finite element meshes , 2011 .

[42]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[43]  M. Buchanan,et al.  Networks in cell biology , 2010 .

[44]  Lionello Pogliani Complete graph conjecture for inner‐core electrons: Homogeneous index case , 2003, J. Comput. Chem..

[45]  Ernesto Estrada,et al.  Communicability geometry captures traffic flows in cities , 2018, Nature Human Behaviour.

[46]  Alexander Grigor'yan,et al.  Heat kernels and function theory on metric measure spaces , 2003 .

[47]  Ginestra Bianconi,et al.  Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes. , 2016, Physical review. E.

[48]  S. Levin,et al.  Superdiffusion and encounter rates in diluted, low dimensional worlds , 2008 .

[49]  Vito Latora,et al.  Structural measures for multiplex networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Ernesto Estrada,et al.  Path Laplacian operators and superdiffusive processes on graphs. I. one-dimensional case , 2016, 1604.00555.

[51]  A. Atilgan,et al.  Small-world communication of residues and significance for protein dynamics. , 2003, Biophysical journal.

[52]  V. Latora,et al.  Complex Networks: Principles, Methods and Applications , 2017 .

[53]  Yoshihisa Kubota,et al.  Multiple diffusion mechanisms due to nanostructuring in crowded environments. , 2007, Biophysical journal.

[54]  Martin Sonntag,et al.  Competition hypergraphs , 2004, Discret. Appl. Math..

[55]  Ernesto Estrada,et al.  The Structure of Complex Networks: Theory and Applications , 2011 .

[56]  Steffen Klamt,et al.  Hypergraphs and Cellular Networks , 2009, PLoS Comput. Biol..

[57]  Joaquín Goñi,et al.  The semantic organization of the animal category: evidence from semantic verbal fluency and network theory , 2011, Cognitive Processing.

[58]  Danijela Horak,et al.  Persistent homology of complex networks , 2008, 0811.2203.

[59]  Erwin Frey,et al.  Brownian motion: a paradigm of soft matter and biological physics , 2005, Annalen der Physik.

[60]  R. Metzler,et al.  Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii , 2015, Scientific Reports.

[61]  Wenchang Tan,et al.  Calcium waves initiating from the anomalous subdiffusive calcium sparks , 2014, Journal of The Royal Society Interface.

[62]  Jon Norberg,et al.  A Network Approach for Analyzing Spatially Structured Populations in Fragmented Landscape , 2007, Landscape Ecology.

[63]  Karl-Theodor Sturm,et al.  Diffusion processes and heat kernels on metric spaces , 1998 .

[64]  A. Law,et al.  The neglected co-star in the dementia drama: the putative roles of astrocytes in the pathogeneses of major neurocognitive disorders , 2014, Molecular Psychiatry.

[66]  Shunjiang Ni,et al.  Impact of travel patterns on epidemic dynamics in heterogeneous spatial metapopulation networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Thomas T. Hills Animal Foraging and the Evolution of Goal-Directed Cognition , 2006, Cogn. Sci..

[68]  E. B. Ridgway,et al.  Free calcium increases explosively in activating medaka eggs. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[70]  D. Zanette Statistical-thermodynamical foundations of anomalous diffusion , 1999, cond-mat/9905064.

[71]  S. Zimmerman,et al.  Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. , 1991, Journal of molecular biology.

[72]  Hilbert,et al.  Methods of Mathematical Physics, vol. II. Partial Differential Equations , 1963 .

[73]  Jaap van Pelt,et al.  A shape analysis framework for neuromorphometry , 2002, Network.

[74]  J. Theriot,et al.  Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. , 2010, Physical review letters.

[75]  Kevin Burrage,et al.  Sources of anomalous diffusion on cell membranes: a Monte Carlo study. , 2007, Biophysical journal.

[76]  J. Dobnikar,et al.  E. coli superdiffusion and chemotaxis-search strategy, precision, and motility. , 2009, Biophysical journal.

[77]  Huan‐Xiang Zhou,et al.  Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. , 2008, Annual review of biophysics.

[78]  E. Ouhabaz Analysis of Heat Equations on Domains. (LMS-31) , 2009 .

[79]  Nicola J. Allen,et al.  Neuroscience: Glia — more than just brain glue , 2009, Nature.

[80]  Potsdam,et al.  Complex networks in climate dynamics. Comparing linear and nonlinear network construction methods , 2009, 0907.4359.

[81]  K. Painter,et al.  Space-time fractional diffusion in cell movement models with delay , 2018, Mathematical Models and Methods in Applied Sciences.

[82]  N. Trinajstic Chemical Graph Theory , 1992 .

[83]  Min Xu,et al.  Random Processes In Physics And Finance , 2006 .

[84]  M. Endo,et al.  Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. , 1970, Nature.

[85]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality and clustering in complex hyper-networks , 2006 .

[86]  Radek Erban,et al.  From Individual to Collective Behavior in Bacterial Chemotaxis , 2004, SIAM J. Appl. Math..

[87]  Maria Tengö,et al.  The value of small size: loss of forest patches and ecological thresholds in southern Madagascar. , 2006, Ecological applications : a publication of the Ecological Society of America.

[88]  C. Jacobs-Wagner,et al.  Physical Nature of the Bacterial Cytoplasm , 2014 .

[89]  Ernesto Estrada,et al.  Using network centrality measures to manage landscape connectivity. , 2008, Ecological applications : a publication of the Ecological Society of America.

[90]  H. Stanley,et al.  Lévy flight random searches in biological phenomena , 2002 .

[91]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[92]  Christophe Claramunt,et al.  Topological Analysis of Urban Street Networks , 2004 .

[93]  Sergio Gómez,et al.  Spectral properties of the Laplacian of multiplex networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[95]  Radek Erban,et al.  From Signal Transduction to Spatial Pattern Formation in E. coli: A Paradigm for Multiscale Modeling in Biology , 2005 .

[96]  Alessandro Vespignani,et al.  The Architecture of Complex Weighted Networks: Measurements and Models , 2007 .

[97]  M. Pascual,et al.  Ecological networks : Linking structure to dynamics in food webs , 2006 .

[98]  Jenny F. Burrow,et al.  Lévy Processes, Saltatory Foraging, and Superdiffusion , 2008 .

[99]  Kevin J. Painter,et al.  Fractional Patlak-Keller-Segel Equations for Chemotactic Superdiffusion , 2017, SIAM J. Appl. Math..

[100]  Alessandro Vespignani,et al.  Invasion threshold in heterogeneous metapopulation networks. , 2007, Physical review letters.

[101]  Ernesto Estrada,et al.  Path Laplacian operators and superdiffusive processes on graphs. II. Two-dimensional lattice , 2018, Linear Algebra and its Applications.

[102]  Ernesto Estrada Communicability geometry of multiplexes , 2019, New Journal of Physics.

[103]  Tamara G. Kolda,et al.  Community structure and scale-free collections of Erdös-Rényi graphs , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[104]  M. Batty The Size, Scale, and Shape of Cities , 2008, Science.

[105]  Andrea Baronchelli,et al.  Contagion dynamics in time-varying metapopulation networks , 2012, ArXiv.

[106]  Harry Eugene Stanley,et al.  Robustness of a Network of Networks , 2010, Physical review letters.

[107]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.